On Inequalities of Trapezium Type Via Fractional Integrals Operators
DOI:
https://doi.org/10.54938/ijemdm.2022.01.2.42Keywords:
Hermite-Hadamard inequality, Riemann-Liouville Fractional integrals, Katugampola Fractional integrals, ($\psi$,$h$)-Convex functionAbstract
In this article, we get solutions of some integral inequalities of Hermite-Hadamard type and using the approach of ($\psi$,$h$)-Convex function by the way of Riemann-Liouville Fractional integrals and Katugampola Fractional integral operators.
Downloads
References
H. Chen, U. N. Katuggampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals. Journal of Mathematical Analysis and Applications,446(2), 1247-1291(2017).
https://doi.org/10.1016/j.jmaa.2016.09.018
S. S. Dradomir, R. P. Agarwal, Two inequalities for differential mappings and applications to special mean of real numbers and to trapizoidal formula, Appl. Math. Lett.11(5), 13-20 (1998).
https://doi.org/10.1016/S0893-9659(98)00086-X
S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math.21(3),335-341 (1995).
G. Farid, Some Riemann-Liouville fractional integrals inequalities for convex functions. The Journal ofAnalysis,27, 1095-1102 (2019).
https://doi.org/10.1007/s41478-018-0079-4
M. E. Gordji, M. R. Delavar, S. S. Dragomir, Some inequality related toη-convex function-II, RGMIARes. Rep. Coll.18, 1-14 (2015).
U. N. Katugampola, New approach to a Generalized fractional integrals. Applied Mathematics andComputation,218(3), 860-865 (2011).
https://doi.org/10.1016/j.amc.2011.03.062
S. kermausuor, E. R. Nwaeze, New integral inequalities of Hermite-Hadamard type via the katugampolafractional integrals for stronglyη−Quasiconvex functions.The Journal of Analysis,29, 633-647 (2020).
https://doi.org/10.1007/s41478-020-00271-9
M. A. Khan, Y. Khurshid, T. Ali, Hermite-Hadamard In-equality for Fractional Integrals viaη-ConvexFunctions. Acta Mathematica Universitatis Comenianae,86(1), 153-164 (2017).
M. A. Noor, K.I. Noor, Some characterizations of strongly preinvex functions, Journal of Mathematical Analysis and Applications,316, 697-706 (2006).
https://doi.org/10.1016/j.jmaa.2005.05.014
E. Set, B. Celik, A. O. Akdemir, Some New Hermite-Hadamard Type Inequalities for Quasi-Convex Functions via Fractional Integral Operator. American Institute of Physics Conference Proceedings.(2017).
https://doi.org/10.1063/1.4981669
E. Set, E. A. Alan, Hermite-Hadamard-Fejer type inequalities involving generalized fractional integrals.Journal of Analysis,27, 1007-1027 (2019).
https://doi.org/10.1007/s41478-018-0159-5
E. Set, H. Yaldiz, M. Z. Sarikaya, N. Basak,Hermite-Hadamard inequalities for fractional integrals andrelated fractional integrals, The Journal of Analysis,57(9-10), 2403-2407 (2013).
https://doi.org/10.1016/j.mcm.2011.12.048
R. Saima, M. Mursaleen, H. Zakia, A novel approach of simpsons inequalities having Rainas function correlated with generalized (η,ψ) convex functions and their applications, Division of Applied mathematics, Thu Mot University, (2010).
M. Tomar, M. Jleli, P. Agarawal, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, Journal of Inequalities and Applications,55, (2017), DOI 10.1186/s13660.017.1318.y.
https://doi.org/10.1186/s13660-017-1318-y
C. Yaldiz, M. E. Ozdemir, The Hadamard Inequalities for quasi-convex functions via fractional integrals, Annals of the University of Craiova-Mathematics and Computer Science Series,40(2), 167-173 (2013).
Downloads
Published
How to Cite
License
Copyright (c) 2022 International Journal of Emerging Multidisciplinaries: Mathematics

This work is licensed under a Creative Commons Attribution 4.0 International License.