Inequalities for Riemann - Stieltjes integral
DOI:
https://doi.org/10.54938/ijemdm.2022.01.1.14Keywords:
Riemann-Stieltjes integral, Bounded p-variation, Hölder continuousAbstract
Two new inequalities for Riemann--Stieltjes integral are introduced for functions of bounded $p$-variation and H\"{o}lder continuous integrators.
Downloads
References
Alomari, M.W. Two-point Ostrowski's inequality, Results in Mathematics, 72 (3), 1499-1523 (2017). https://doi.org/10.1007/s00025-017-0720-6
Edwards, R.E. Fourier series: A Modern Introduction, vol. 1, 2ed., Springer, (1979). https://doi.org/10.1007/978-1-4612-6208-4_1
Natanson, I.P. Theory of functions of a real variable, Frederick Ungar Publishing Company, New York 1965.
Norvaisa, R. Rough functions: p-variation, calculus, and index estimation, Lithuanian Mathematical Journal, 46 (1), 102-128 (2006). https://doi.org/10.1007/s10986-006-0015-1
Wiener, N. The quadratic variation of a function and its Fourier coefficients. Mass. J. Math. 3, 72-94 (1924). https://doi.org/10.1002/sapm19243272
Young, L.C. An inequality of the Holder type, connected with Stieltjes integration, Acta Math. 67 (1), 251-282 (1936). https://doi.org/10.1007/BF02401743
Downloads
Published
How to Cite
License
Copyright (c) 2022 Mathematics

This work is licensed under a Creative Commons Attribution 4.0 International License.