Axisymmetric Hydromagnetized Heat Transfer across a Stretching Sheet with Joule Heating and Radiation
DOI:
https://doi.org/10.54938/ijemdm.2022.01.3.103Keywords:
Axisymmetric flow; Magnetic field; Ohmic law; Radiation; Stretching surface; Similarity transformation.Abstract
This investigation thoroughly analyses magnetohydrodynamics axisymmetric fluid flow and heat transfer over an exponentially stretching sheet in the presence of radiation and Joule heating effects. The governing partial differential equation is obtained and converted into coupled ordinary differential equations using a suitable similarity transformation. This transformation is also used to re-model the governing system to modify ODEs and boundary conditions using the BVP4C MATLAB) package. The effects of the involved physical parameters, such as suction/injection parameter, magnetic parameter, Prandtl number, Eckert number, and radiation parameter on velocity and temperature profiles are shown graphically. The effects of various parameters on Nusselt number and skin friction coefficient are shown in tabular form. It has been determined that the presence of a magnetic field improves a fluid's thermal behaviour. Furthermore, increasing the magnitude of the magnetic field reduces the fluid's radial velocity
Downloads
References
Sakiadis, B.C. Boundary‐layer behavior on continuous solid surfaces: I. Boundary‐layer equations for two‐dimensional and axisymmetric flow.AIChE Journal,7(1), 26-28 (1961).
https://doi.org/10.1002/aic.690070108
Crane, L.J. Flow past a stretching plate.Zeitschrift für angewandte Mathematik und Physik ZAMP,21(4), pp. 645-647 (1970).
https://doi.org/10.1007/BF01587695
Char, M.I. Heat transfer of a continuous, stretching surface with suction or blowing.Journal of Mathematical Analysis and Applications,135(2), 568-580 (1988).
https://doi.org/10.1016/0022-247X(88)90172-2
Fang, T. and Zhang, J. An exact analytical solution of the Falkner-Skan equation with mass transfer and wall stretching, International Journal of Non-Linear Mechanics,43(9), 1000-1006 (2008).
https://doi.org/10.1016/j.ijnonlinmec.2008.05.006
Hayat, T., Abbas, Z. and Sajid, M. Series solution for the upper-convected Maxwell fluid over a porous stretching plate.Physics Letters A,358(5-6), 396-403 (2006).
https://doi.org/10.1016/j.physleta.2006.04.117
Ali, M.E. On thermal boundary layer on a power-law stretched surface with suction or injection.International Journal of Heat and Fluid Flow,16(4), 280-290 (1995).
https://doi.org/10.1016/0142-727X(95)00001-7
Magyari, E. and Keller, B. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface.Journal of Physics D: Applied Physics,32(5), 577 (1999).
https://doi.org/10.1088/0022-3727/32/5/012
Kumaran, V. and Ramanaiah, G. A note on the flow over a stretching sheet.Acta Mechanica,116(1), 229-233 (1996).
https://doi.org/10.1007/BF01171433
Xu, H. and Liao, S.J. Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate.Journal of Non-Newtonian Fluid Mechanics,129(1), 46-55 (2005).
https://doi.org/10.1016/j.jnnfm.2005.05.005
Cortell, R. Effects of viscousdissipation and work done by deformation on the MHD flow and heat transfer of a viscoelastic fluid over a stretching sheet.Physics Letters A,357(4-5), 298-305 (2006).
https://doi.org/10.1016/j.physleta.2006.04.051
Vajravelu, K. and Cannon, J.R. Fluid flow over a nonlinearly stretching sheet.Applied Mathematics and Computation,181(1), 609-618 (2006).
https://doi.org/10.1016/j.amc.2005.08.051
Hayat, T., Abbas, Z. and Sajid, M. Series solution for the upper-convected Maxwell fluid over a porous stretching plate.Physics Letters A,358(5-6), 396-403 (2006).
https://doi.org/10.1016/j.physleta.2006.04.117
Mahmood, A., Ahmed, S. and Iram, H. Joule and Viscous Dissipation Effects on MHD Boundary Layer Flow over a Stretching Sheet with Variable Thickness.International Journal of Emerging Multidisciplinaries: Mathematics,1(2),1-10 (2022).
https://doi.org/10.54938/ijemdm.2022.01.2.27
Usman, K. Numerical Analysis Of a Falling Circular Particle Passing through a Fluid Channel having Diamond Shaped Obstacles.International Journal of Emerging Multidisciplinaries: Mathematics,1(2), 11-22 (2022).
https://doi.org/10.54938/ijemdm.2022.01.2.26
Khan, U., Abbasi, A., Ahmed, N. and Ullah, B. Effects of Thermal Radiation on Jeffery Hamel Flow for Stretchable Walls of Newtonian Fluid: Analytical Investigation.International Journal of Emerging Multidisciplinaries: Mathematics,1(2), 71-83 (2022).
https://doi.org/10.54938/ijemdm.2022.01.2.17
Hussain, A., Afzal, A. and Mahmood, R. Numerical Investigation of Viscous Fluid Flow and Heat Transfer in the Closed Configuration Installed with Baffles.International Journal of Emerging Multidisciplinaries: Mathematics,1(2), 49-57 (2022).
https://doi.org/10.54938/ijemdm.2022.01.2.28
Naseem, T., Fatima, U., Munir, M., Shahzad, A., Kausar, N., Nisar, K.S., Saleel, C.A. and Abbas, M. Joule heating and viscous dissipation effects in hydromagnetized boundary layer flow with variable temperature.Case Studies in Thermal Engineering,35, p.102083 (2022).
https://doi.org/10.1016/j.csite.2022.102083
Bidin, B. and Nazar, R. Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation.European journal of scientific research,33(4), 710-717 (2009)
Naseem, T., Nazir, U., Sohail, M., Alrabaiah, H., Sherif, E.S.M. and Park, C. Numerical exploration of thermal transport in water-based nanoparticles: A computational strategy.Case Studies in Thermal Engineering,27, p.101334 (2021).
https://doi.org/10.1016/j.csite.2021.101334
Ariel, P.D. Axisymmetric flow of a second grade fluid past a stretching sheet.International Journal of Engineering Science,39(5), 529-553 (2001).
https://doi.org/10.1016/S0020-7225(00)00052-5
Mirgolbabaei, H., Ganji, D.D., Etghani, M.M. and Sobati, A. Adapted variational iteration method andaxisymmetric flow over a stretching sheet.World Journal of Modelling and Simulation,5(4), 307-314 (2009).
Ariel, P.D. Axisymmetric flow due to a stretching sheet with partial slip.Computers & Mathematics with Applications,54(7-8),1169-1183 (2007).
https://doi.org/10.1016/j.camwa.2006.12.063
Sahoo, B. Effects of partial slip on axisymmetric flow of an electrically conducting viscoelastic fluid past a stretching sheet.Open Physics,8(3), 498-508 (2010).
https://doi.org/10.2478/s11534-009-0105-x
Shahzad, A., Ali, R. and Khan, M. On the exact solution for axisymmetric flow and heat transfer over a nonlinear radially stretching sheet.Chinese Physics Letters,29(8), p. 084705 (2012).
https://doi.org/10.1088/0256-307X/29/8/084705
Ali, R., Shahzad, A., Khan, M. and Ayub, M. Analytic and numerical solutions for axisymmetric flow with partial slip.Engineering with Computers,32(1), 149-154 (2016).
https://doi.org/10.1007/s00366-015-0405-2
Elbashbeshy, E.M.A. and Dimian, M.F. Effectof radiation on the flow and heat transfer over a wedge with variable viscosity.Applied Mathematics and Computation,132(2-3), 445-454 (2002).
https://doi.org/10.1016/S0096-3003(01)00205-3
Cortell, R. A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet.International Journal of Non-Linear Mechanics,41(1), 78-85 (2006).
https://doi.org/10.1016/j.ijnonlinmec.2005.04.008
Jat, R.N. and Chaudhari, S. Magnetohydrodynamics boundary layer flow near the stagnation point of a stretching sheet.Nuovo Cimento della Societa Italiana di Fisica. B, General Physics, Relativity, Astronomy and Mathematical Physics and Methods,123(5), 555-566 (2008).
Mukhopadhyay, S. and Gorla, R.S.R. Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation.Heat and Mass Transfer,48(10), 1773-1781 (2012).
https://doi.org/10.1007/s00231-012-1024-8
Nadeem, S., Zaheer, S. and Fang, T. Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface.Numerical Algorithms,57(2), 187-205 (2011).
https://doi.org/10.1007/s11075-010-9423-8
Carragher, P. and LJ, C. Heat transfer on a continuous stretching sheet (1982).
https://doi.org/10.1515/9783112546901-009
Gupta, P.S. and Gupta, A.S. Heat and mass transfer on a stretching sheet with suction or blowing.The Canadian journal of chemical engineering,55(6), 744-746 (1977).
https://doi.org/10.1002/cjce.5450550619
Raptis, A.,Perdikis, C. and Takhar, H.S. Effect of thermal radiation on MHD flow.Applied Mathematics and computation,153(3), 645-649 (2004).
https://doi.org/10.1016/S0096-3003(03)00657-X
Jat, R.N. and Chaudhary, S. Radiation effects on the MHD flow near the stagnation point of a stretching sheet.Zeitschrift für angewandte Mathematik und Physik,61(6), 1151-1154 (2010).
https://doi.org/10.1007/s00033-010-0072-5
Ishak, A. Radiation effects on the flow and heat transfer over a moving plate in a parallel stream.Chinese Physics Letters,26(3), p. 034701 (2009).
https://doi.org/10.1088/0256-307X/26/3/034701
Shahzad, A., Ali, R., Kamran, M., Khan, S.U.D., Khan, S.U.D. and Farooq, A. Axisymmetric flow with heat transfer over exponentially stretching sheet: A computational approach.Physica A: Statistical Mechanics and its Applications,554, p. 124242 (2020).
Downloads
Published
How to Cite
License
Copyright (c) 2022 International Journal of Emerging Multidisciplinaries: Mathematics

This work is licensed under a Creative Commons Attribution 4.0 International License.