
    
 Email addresses: imraja313@gmail.com (R. Mehmood Khan), naveed.imran@hitec.edu.pk (N. Imran) 

 

 

 

IJEMD-M, 1 (3) (2022) 40 - 51                      https://doi.org/10.54938/ijemdm.2022.01.3.86 
 

 International Journal of Emerging Multidisciplinaries: 
Mathematics 

 
Research Paper 

Journal Homepage: www.ojs.ijemd.com 
ISSN: 2790-1998 (print), 2790-3257 (online) 

 
 

 

 

Homotopy Analysis Method for Free-Convective Boundary-

Layer Equation Using Pade´Approximation 

Raja Mehmood Khan1 and Naveed Imran1, * 

1 HITEC Colleges, HIT Taxila Cantt, Pakistan 

*Corresponding author 
 

 Abstract 
 
This paper is devoted to the study of a free-convective boundary layer flow modeled by a system of nonlinear ordinary differential 

equations. We apply Homotopy Analysis Method (HAM)  along with Pade´ approximation to solve free-convective boundary-layer 

equation. It is observed that the combination of HAM and the Pade´ approximation improves the accuracy and enlarge the 

convergence domain. 
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1. Introduction 
 

Most of the physical phenomenon is nonlinear [1-20] in nature. The present manuscript reflects a comprehensive study 

on boundary-layer flows of viscous fluids [17-20] which are of utmost importance for industry and applied sceinces. 

These flows can be modeled by systems of nonlinear ordinary differential equations on an unbounded domain, see 

[19,21-25] and the refernces therein. Keeping in view the physical importance of such problems, there is a dire need of 

extension of some reliable and efficient technique for the solution of such problems. Liao [7-9, 20] developed the 

Homotopy Analysis Method (HAM) which is very efficient, accurate and is  being used very frequently for finding the 

appropriate solutions of nonlinear problems of physical nature. The basic motivation of this paper is the application of 

Homotopy Analysis Method (HAM) coupled with Pade´ approximation to solve a free-convective boundary layer flow 
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modeled by a system of nonlinear ordinary differential equations. Numerical and figurative illustrations show that it is 

a promising tool for solving nonlinear problems. 

2. Homotopy Analysis Method (HAM) [1-20] 

We consider the following equation 

  

  0,                                                                                                                          (1)N u    


 

where N


 is a nonlinear operator, ߬ denotes dependent variables and   u  is an unknown function. For simplicity, we 

ignore all boundary and initial conditions, which can be treated in the similar way. By means of HAM Liao [6-10] 

constructed zero-order deformation equation 

 

       01 ; ; ,                                                         (2 )p p u p N p            


L  

where L  is a linear operator,  0u   is an initial guess. 0  is an auxiliary parameter and  0,1p  is the 

embedding parameter. It is obvious that when p=0 and 1, it holds  

 

       0 0; 0 0      ; 0 ,                                                    (3 )u u          L  

       

     ;1  0   ;1  ,                                                                    ( 4 )N u        


  

respectively. The solution  ; p  varies from initial guess  0u   to solution  u  . Liao [18] expanded   ; p  

in Taylor series about the embedding parameter   

 

   0
1

; ( ) ,                                                                                            (5)m
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m
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



     

where  
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The convergence of (5) depends on the auxiliary parameter  . If this series is convergent at p=1,  

   0 m
m 1

τ;1 u τ u ( τ ),                                                                                                     (7 )





   

Define vector 
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If we differentiate the zeroth-order deformation equation Eq. (2) ݉-times with respect to ݌ and then divide them !m  

and finally set 0p  , we obtain the following m-th order deformation equation 

 

 

  11( ) ,                                                                                                (8 )mm m m mu X u u  
        



L R  
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R  

and  

0,      1,
                                                                                                           (10)

1,       1,m

m
X

m


  
 

If we multiply with 1L  each side of Eq. (8), we will obtain the following m-th order deformation equation  

     11     mm m m mu X u u  
    
 



R  

 

3.  Mathematical Model 

Let us consider the problem of cooling of a low-heat-resistance sheet that moves downwards in a viscous fluid 

              0,u v
x y
 

 
 

                                                                                                                                             (11) 

             
2

02 ,u u uu v v g T T
x y y


  

   
  

                                                                                                          (12)                                                        

            
2

2 ,T T Tu v
x y y


  

 
  

                                                                                                                                (13) 

subject to 

   0,          0  at  y=0,u v                                                                                                                                     (14) 
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   00,       T T  as y ,u                                                                                                                                (15) 

where u and v are the velocity components in the x- and y- directions, respectively. T  is the  

temperature , 0T  is the temperature of the surrounding fluid, ν is the kinematic viscosity, κ is 

the thermal diffusivity, g is the acceleration due to gravity and β is the coefficient of thermal  

expansion. Using the similarity variables  

   1/42 3
1 0 0 ,g T T v x f                                                                                                                                  (16) 

      
3

0
0 1 0

0

,xT T T T
x x

 
 

    
  

                                                                                                                        (17) 

  
 

 

1/43
1 0 0

2
0

,
g T T x y

v x x



 

  
  

                                                                                                                        (18) 

where ψ is the stream function defined by u = ∂ψ/∂y and v =−∂ψ/∂x, f  and θ are the similarity  

functions dependent on η, T (0, 0) = 1T   and θ(0) = 1, (3.11)–(3.13) are transformed to        

          2'''( ) ( ) '( ) 0,f f                                                                                                                                (19)   

       ''( ) 3 '( ) ( ) 0,f                                                                                                                                        (20) 

subject to the boundary conditions 

 (0) 0,      '(0) 0,      '( ) 0,f f f                                                                                                                      (21) 

  (0) 1,     (+ )=0,                                                                                                                                               (22) 

where the primes denote differentiation with respect to η and σ is the Prandtl number.  

 

4.       Pade´ Approximation 

We denote L, M Pade´ approximants to f (z) by 



44                                                                                                                                                    International Journal of Emerging Multidisciplinaries 

 

                                                       
 zQ
zPML

M

L  ,                                                                                                 (23) 

where   zPL  is polynomial of degree at most L and      0zQzQ MM  is a polynomial of degree at most M. The 

former power series is     

                                                        





0k

k
k zczf ,                                                                                             (24) 

And we write the   zPL  and   zQM  as  

        zPL
L

L zpzpzpzpp  3
3

2
210 , 

        M
MM zqzqzqzqqzQ  3

3
2

210 ,                                                                                     (25) 

 so 

                                                      
   1 ML

M

L zO
zQ
zPzf   as  0z ,                                                              (26) 

and the coefficients of   zPL  and   zQM  are determined by the equation. From (4.4), we have   

                                                           1 ML
LM zOzPzQzf ,                                                                      (27) 

which system of L+M+1  homogeneous equations with L+M+2  unknown quantities. We impose the normalization 

condition 

                                                    .                                                                                                         (28) 

   We can write out (27) as 

  10 MQ
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
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 From (29) we can obtain the  Miqi 1 .Once the values of Mqqq ,,, 21   are all known (30) gives an explicit 

formula for the unknown quantities Lppp ,,, 21  . Since the diagonal approximants like 

         6655,44,33,22 or   have the most accurate approximants by built-in utilities of Maple. 

 

5.    Solution Procedure Consider the following problem formulated in section 2 and is related to the free-

convective boundary layer flow 

     2'''( ) ( ) '( ) 0,f f                                                                                                 

       ''( ) 3 '( ) ( ) 0,f                                                                                                     

subject to the boundary conditions 

 (0) 0,      '(0) 0,      '( ) 0,f f f                                                                                     

  (0) 1,     (+ )=0,                                                                                                            

where the primes denote differentiation with respect to η and σ is the Prandtl number. The linear operator is defind as 

,)(1 ff L                                                                                                                                     

,)(2  L                                                                                                                                                      

with the property that 

,0)( 2
2101   CCCL                                                                                                         
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,0)( 432  CCL                                                                                                                              

where )40( iCi  are arbitrary constants. 

If we choose ]1,0[q as embedding parameter, hh f  and as convergence control parameters then the zeroth-order 

deformation problem reads as 

   ,);(),;()();()1( 101 qqFqfqFq f   NL                                                                             

   );(),;()();()1( 202 qqFqqq    NL  ,                                                                         

  and the nonlinear operators 21  and NN  are defined as 

  ,);();();();(),;(
2

3

3

1 




















 qFqqFqqFN    

     , );();(3);();(),;( 2

2

2 
















 qqFqqqF 




N                                                             

Obviously, when 0q and ,1q it holds 

).()1,(   ),()0,( 0  fFfF                                                                                                           

 ).()1,(   ),()0,( 0                                                                                                            

Thus as q increases from 0 to1, q),( and );(  qF varies from the initial guess )( and )( 00 f to the final solution

)( and )( f . We expand );( and );( qqF   in the Taylor series as  

,),(
!

1)(       ,)()(),(
01

0




 


 
q

m

m

m
m

m
m q
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m
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,),(
!

1)(       ,)()(),(
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0



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m
m q

q
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at 1q , 







1

0 ).()()(
m

mfff                                                                                                                     
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





1

0 ).()()(
m

m                                                                                                                      

Differentiating m -times the zero-order deformation problem with respect to q and then setting 0q and finally 

dividing by !m , we obtain the mth -order deformation problem given by 

),()]()([ ,111  mmmm ff RL                                                                                                        

),()]()([ ,212  mmmm RL                                                                                                            

Using the initial guess  

2
0 1

1( : ,)
2

f         0 2( ) := 1+ ,     

and using the m-th order deformations we have, 

1 2
3 4 52

1
1 1 1( ) :
6 24 60

f        , 

1
4 3

1 2 1
1 1
4

( ) = -
2

- ,      

4 2 2 2
2 1 2 1 1 2 2 1

11 10 9

1

9 7

7 6

2
81 1 1 1 1 1( )

142560 25920 6048 18144 2016 840
1 1

840
,

240

f               

 

    






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1 2
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+ +
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,                  

and so on.  

The series solution is 

2 2 4 2 2
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Figure 1 Figure 2 

 

Figure 3 Figure 4 
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Figure 5 Figure 6 

                      
 

Figure 7 Figure 8 

 

 

6.       Conclusions  
Homotopy Analysis Method (HAM) coupled with Pade´ approximation is employed to to solve a system of 

two nonlinear ordinary differential equations that describes a free-convective boundary layer in glass-fibre 

production process. The results show strong effects of the Prandtl number on the velocity and temperature 

profiles since the two model equations are coupled. 
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