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1. Introduction

The concept of convexity has played a dominant role and has gotten special attention by many researchers in
various places of pure and applied sciences. It is noticed that the convex (concave) function is one of the most
significant function which is furthermore generalized day by day see the References [5, 7, 8, 9, 13, 15]. One
of the significant generalization from these references is y-Convex function which is furthermore generalized
by using the concept of Raina’s function as (y,h)-Convex function in [13] by R. Saima.

In literature, there are so many results related with convex or generalized convex function in inequalities,
one of the popular inequality is Hermite-Hadamard inequality, which is widely seen in the mathematical
literature.

The concept of (y,h)-Convexity provides a powerful tools in proving a large scale of inequalities. Several
generalizations and extensions concerning to the below inequality have been proved by many researchers see
the Reference [2] Dragomir and Agarwal.

Let g be a convex function on the finite interval [vy,v;], then

8 <V1—;V2) < 1 /vzg(x)dxg w

- V2_V1 9 2

Different results have been established using this integral inequality by connecting it with Riemann-Liouville
fractional integrals see for instance [4]. The above inequality has never ceased to fascinate researchers,
several variants, extensions, generalization and improvements have been set up.

In [2] Dragomir and Agarwal derived the following Hermite-Hadamard type inequality in this form

vi+v2 1 /V2 va—vi ([g/(v1) [+ ]g/(v2) |
_ dx |<
|g( ! ) R e ( :
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In [7] Kermausuor and Nwaeze proved the following inequality as

[ gl < max(g(v:).g(02)]

VZ - Vl V1

by connecting it with Katugampola fractional integral for strongly 11— quasi-convex function.

Different researchers has worked on different integral inequalities such as Hermite and Hadamard type,
Simpson and Fejer type inequalitites, using the approach of generalizations of convex function such as
1 —convex, Quasi-convex, (1, ) — convex and preinvex functions. For recent references see [1, 4, 5, 6, 7, 9,
10, 13].

The integral inequalities having different fractional integral operators such as Riemann-Liouville, katugam-
pola and k-integral operator which have been considered in [4, 7, 14] respectively. A Since work in this
direction has received many more attention, we try to introduce some useful formulations in this article such
as the known results involving different fractional integrals and fractional integral operators become more
generalized and comprehensible and these results give some new ideas to the upcoming researchers.

This section contains different basic definitions of convexity and operators,as well as some useful results that
will be necessary for the development of the present work.

Definition 1.1. [/3] Let Q C R" and a mapping g : QQ — R" is said to be classical y-Convex function, if
g(v1+CF . (v—v1)) < (1-{)g(v1) +Eg(v2) Yor,03 € ;¢ €[0,1]
where F g,n denotes Raina’s function which is defined in [13] as:

SO

Fﬁ, Z) = -7,
¢ (@) ,;)F<k€+n)

Where g, >0 |z] < Rand ¥ = (¥(0),......, 3(K),.....) be a bounded sequences of positive real numbers.
Ifwe take ¢ = 1,1 =0, then
O (k) = (GG
(03)x

Where o, 0y, 03 are parameters which can take real and complex number provided (o3 # 0,—1,—2, ...) also,

(a) = % —ala+1)(@+2)e(atk—1),k=0,1,2,....

and restrict its domain to |z] < 1 with z € C then we have a well known function known as hypergeometric
function which is defined as

[ee]

Fg’n (z) = F(a1, 2, 03;2) :E%Zk

The concept of (y,h)-Convex function has been generalized by R. Saima in [13] as follows.

Definition 1.2. [13] Let a non negative function be h: (0,1) C T — R and Q be a y-convex set. A function
g : Q — R" is said to be (y,h)-Convex function, if

g(V1+8r g (v2—v1)) <h(1=E)g(vr) +h(§)g(v2) Yor,v2 € ;¢ €0,1]

where ?,n denotes Raina’s function and ¥ = (9(0), ......,9(K), .....) be a bounded sequences of positive
real numbers with g, >0

Remark 1.3. If h({) = § with Fg,n (V2 — V1) = V2 — vy in Defination 2 then we get classical convex
function.
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Definition 1.4. [7] The left and right-sided Riemann-liouville fractional integrals of order o0 > 0 of g are
defined by

1 * a_
W80 = gy [ G0 x> v
1

1 V2 a
J% g(x) = / t—x)tLg(t)dt,
k Vzg(x) krk(a) N ( x) g( ) x<v2
where k is positive and Iy, is the k-Gamma function defined by
(o'} tk
Ik (x) :/ e Fdr
0

Noted that T'y(x+ k) = xI'x(x)
Definition 1.5. [7] let [vi,v2] C R be a finite interval .Then the left and right-sided Katugampola fractional
integrals of order o, > 0 of g€ XF (v1,v2) are defined by

-« p—1
PIYg(x) = l’z(a) /V1 (xpitp)l_ag(t)dt

PIOC pl_a V2 tp_l d
5 800 = F(a)/x (@ — )i asd!

withvy <x<wvy;p >0
Definition 1.6. [7] The left and right-sided Hadamard fractional integrals of order oc > 0 of g are defined by

Hvoiig(x) = ﬁ/j <lnl>a Lelt )dt

1 M2y t\%1g(r)
Heo = [ (nl) 80y,
580 =gy [ Ing ‘
Theorem 1.7. [6] Let o > Oand p > 0. Then for x > a

11mpl +g( )= J+g( )

and

hmpz % () = HE g(x)

Where I, J, H are the Katugampola, Riemann-liouville and Hadamard fractional integral operators respec-
tively. Similarly, these results hold for right-sided operators.

Theorem 1.8. For p =k =1 .Then for a > 0
W 8(x) =PI g(x)

W2 8(x) = P12 8(x)
Where I and J are the Katugampola and Riemann-liouville fractional integral operators respectively.

Theorem 1.9. [/] Let o, p > 0 with a bounded sequence of real numbers ¥ = (¥(0),......,3(K),.....).Let

g: [V V8] = R be a (y,h)-Convex differentiable function on (V] ,V5) with 0 < vy < v,. If the fractional

integrals exists then

g0 +e(h) pT(a+1),
2 2(v’2) v’l))“

Vp—Vp
_ B ve / = (CF2)P)e = (CF 2P
Xg’((CFg,n) V1 (1_(CF<; 711) ))V’z)))dQGW >0

Where I is Katugampola fractional integral operator and F is Raina’s function.

P e(v )+”1°‘g( D
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In particular, this article have some generalizations about the Hermite-Hadamard inequalities using the
approach of (y,h)-Convex function and fractional integral operators.

2. Main Results

Theorem 2.1. Let o,k > 0 with a bounded sequence of real numbers O = (3(0),...... ,O(K),.....) and let
g:[vi,v2] = R be a (y,h)-Convex function then

ka(oc) a o
2((vy — VI)F?)% [kJ(V1+(v2—v1)Fg)_g(v1) T kJ(vz—(vz—vl),Eg)+g(V2)

< S0 et gy 1 - ) 6. > 0
0

Where J is Riemann-liouville fractional integral operator and F is Raina’s function.

Proof.
g (1= CF v+ (CF L)) < h(1=C)g(n) +h(E)g(v2) @0
g ((CFZmmi+(1=CFLa)vz) < A(E)g() +h(1=E)g(v2) (2.2)

Adding (2.1) and (2.2), multiply both sides by § ©~! and then integrate from O to 1 we get

[t = Cr i £ L)t [ TG G (- G Ly

1 o
< [ CE O+ (1= e+ 23
Consider,
! g1 1 0 O dg
| et e (1= Cr 2w+ Lr L)
Let
X:(l—CFg,n)Vl—{-CFg,n)VQ
then
1 a
|t e (= Cr 2w Lr Lanva) dg
1 v1+(V2*V1)fg,n a
= = X—Vvi)*k x)dx 2.4
[(va—vi)FZ.q]% /Vl ( e ) @9
Similarly

1 a
/0 (v e (CF?;n wi+(1=Cr 2y )Vz) dg
1 /Vz
[(v2 = v1)F 2 1% Jo—(mavi)r 2

=R

(va —x) % Lg(x)dx (2.5)
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Using (2.6) and (2.7) in (2.3) we get

1 /V1+(V2V1)F?vn
o

(v =v)F 2] In

%) o
+/ (v =) F gl
sz(vval)/igm

(x— vl)%_lg(x)dx

< [ €m0+ (- )l +s2)g
Using Definition 1.4 we get

ka(a) o o
J J
2((vo— vl)F?)% [k (V1+(V2*V1)F?)*g(v1) Tk (vr(vrvl)pgyg(vz)

1% 1% 1 a
< 8OHE0D) [t g) 41 - )
0
Which is the required result. O

Remark 2.2. If we take h({) = C,F?,n (V2 — V1) = vy — vy in Theorem 2.1, we will get Theorem 3 in [7]
foru=n=0.
Remark 2.3. If we take h({) = 1, then Theorem 2.1 yields,
Ii(a+k) [ p o g(vi) +g(v)
LA 2 J ] < BV T 8V2)
4(m—v)< i 8+ Jy8(n) ] < 2
which is the special case of Theorem 3 in [7] for u =n = 0.

Theorem 2.4. Let o, p > 0 with a bounded sequence of real numbers ¥ = (9(0),......,3(K),.....) and let
g [vi,v2] = R be a (y,h)-Convex function then

p*'T(at) |4 P\ pya p
—— g |1 1 80N +PI 1 8(v)
208 =) | @ 2ap B AIP) T 2 p Ry
P P 1
glvi) +gv -
< S0 [ pen gy (1 - P))ag gm0
Where 1 is katugampola fractional integral operator and  is Raina’s function.
Proof.
g((1=(GFgm)PV)) +(CFEn)P¥ep) < h(1—EP)g(vV)) +h(EP)s(v) (2.6)
g(CF )PV + (1= (EFgm)P)E) < h(EP)g() +h(1—CP)g(15) 2.7
Adding (2.6) and (2.7) ,multiply both sides by {*°~! and integrate from 0 to 1 we get ,
1
| e [er 2P+ (1= (Cr 2] ag +
1
e s =@ P+ (CF L)) g
1
< [ € 1= 88) 4 hEP) [o0F) + ¢(08)] g @3)

consider,

[ e ater P+ (- (€ PR
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let
=)W+ (1= (CF20)P )

using the technique of integration we get ,

/0150"’ Ne(GF2 )PV + (1= (CFL.)P)E)dE

1 /Vz xp—l
= | —5———g(xP)dx (2.9)
[(F2.0)P (0 — VD)@ o8 2P (8 —h)1P (V5 —xP)1-

Similarly,

[ 6 (- @ L)+ @ PN

o~

_ 1 / (Fc; )P (vy =v)] xpfl
[(F2)P (s =D (xP —h)1-
using (2.9) and (2.10) in (2.8) we get

g(xP)dx (2.10)

1
X
[(F&.n)P (v =)
v p—1 W2, )P(v”—v")]% p—1
/2 lpx—g(xp)dx—}— P x—pg(xp)dx
M= (2P (h )P (v —xP)l—e Vi (xP )1
1
< [ EP) +h(1— 6P (8() + 805
Using the Definition 1.4 we get
OC—lF
LA L g0+ g%
20 =vD)® | (&m0 —1P)- (M —(F )P (B )P )*
g(v‘f>+g(v§)/1 ap-1
< P P _ P
< BB [T Py +h(1 = £P))dg
which is the required result. [

Remark 2.5. Using the assumption that if h(§) =, (Fg )P (V5 —vf) = v) — v in Theorem 2.4 we will
get Theorem 6 in [7] for u =n = 0.

Remark 2.6. If we take p = 1 in Theorem 2.4 then we will obtain Theorem 2.1.

If we take o0 = p =1 in Theorem 2.4 then we will obtain

1 2
— x)dx < g(v1)+g(v
(2 —v1) /v1 g(x)dx < g(vi) +g(v2)
Theorem 2.7. Let oo, p > 0 with a bounded sequence of real numbers ¥ = (3(0), ......, 3(K), .....) and let
g: [v’l) ,vg | = R be a differential mapping on (v‘l) , Vlz) ) with 0 < vy < vy. Then the following inequality holds

if the fractional integrals exists:

g0+ (5 =V (F2.0)P) +805 — (8 —v))(F2.m)P) 0% 1T()

P KVg—Vﬁ))(Fg,n )p]a
pre g(VP)+pIa g(vp)
[ R e e (R S P

v =) (Y
(05 1L(Fg n)’] /lcmaml[g’((l —(CF )P+ (CF Ea)Ph) —

g((CHEm)PVi + (1= (CF . )P)E)ldG:6.m >0
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Where I is katugampola fractional integral operator and F is Raina’s function.

Proof. consider,
1
/0 PTG (1=(CF En)PIR + (EF En)PV)dE
1
= [ (1= (CF L)+ (CF L P

= P2 VY P [E*Pg((1 —(CF?,n )p)Vlf+(CFg7n )PV 1o
2 Vi)l g,

[ 6 e @ LI+ (Er L P AN

= PP 5 g ((1_<Fg7n> ) vy + (F?ﬂ])pvlz))]

s )p/01C“P‘lg((l—(CF?,n>">vﬁ’+<CF?m)"vﬁ)dc .11

As

1 V‘1)+(fg n)P (V5 Vﬁ))}ﬁ xp_l
P
[(F?m) ( P_Vll))]a /Vl (xp—vf)l ag(x )d
Using above relation (2.11) becomes
e (- @ 2P T L PR
_ P
= o8y )(Fgm) (1= (Fgm)P )R+ (F Em)PB)] (2.12)
o R+(FEn)P (4 Vl)]% xP1
_[( g_v1)(Fg’n) ]oH—l/ (xp_vlf)l ag(xp)dx (2.13)
Similarly,
| et (G 2 )P+ (1= (G 2y )PV
_ _ p
= oy a1 S )E)
1
T b ST A (=G L a2
As

[ e e@r PR (1= G PRl

1 v2 xP~1 P\d
NG CEAE Lo ompisi (8 )i a8

1
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So

[P L PR (1 (EF 2 P IR

- _ 1 _ WP

- P(Vg_vl)(lrgﬂﬂ ((Fgm) 1 (1 (Fgﬂ]) ) 2)
o V2 xP—1

i (8 =) (FE )Pl /[’;(F?,n)f’(v;’vﬁ’)]fl’ (Vf —xP)l-c

g(xP)dx (2.15)
Subtracting (2.15) from (2.14) we get,

/ PN g (1= (LF 2 PR+ (CF 8 )PoE) —

¢(er? ,n> HI= (L))l
- v,lf) o EORH GB 0 L)) +0h 0 D L))

—

o [, X )
- —— X X
(08 =Y F L)1 g2t (4 —xp)i—a®

=

W+ 2P (47 ]
- P
+/v1 (xl’—vlf)lfag(x )]
Using Defination 3 we get
[P (1= @ P+ Er ) -
((CFg m) V1 (1_(CFg 71]) )Vlz))]dc
1
T A O L)) 08— (RN )
a(p™ [, ,
- 1 1 g()+PI* 1 gvy)
(V5 — VD) (F )1t | (@ —r 28 —8)17 ) 20 (WA e (A=)
808+ 08— )2 +808—08—)(F20))  p*IT(a)
op (V5 V) (F & )Pl
25 S5 +1° §0%)
[ (B 2P B—NP) 2 (W 2P (4 —A)P) !
(V8

)
= B ANEE) 1 o=t (1~ (01 2 P18+ 61 2 ) -
gCFLg)PV+(1=(EF )P )E)dE

which completes the proof. [

Remark 2.8. Using the assumption (V5 — v/ )(Fg )P = (V5 =¥ in Theorem 2.7, we will get Lemma 3 in

[7].
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Lemma 2.9. Let o« >0and p >0. Let g: [v1 ,v2] — R be a differential mapping on (v} p ) with 0 < vy <.
then the following inequality holds if the fractional integrals exists:

g +g0h)  p*'I(a) o

R AT L G ATl
PP

_m[lg(Vf)l+|g/(V’§)l]

Proof. The prove follows directly by using the the definition of y-Convex function and then integrating. [

Remark 2.10. Lemma 2.9 is the generalization of T heorem?2.3. in [1].

Theorem 2.11. Let o, p > 0 with a bounded sequence of real numbers ¥ = (9(0),.......,3(K),.....). Let

g: ), V5] = R be a differential function on (V] ,V5) with 0 < vy < vy. If |g!|9 be a y-Convex function for

q > 1 then the following inequality holds:

|g(Vll)+(Vp_V1)(Fg m )P )"‘g(vlz)_( h— )(Fg m )P )_ Pa_lr((x)
op (5 = VD) (2 ,5)P]e
pro pra vP
[Iuvgm’,n) oty SV o Lty 80|
v — P , 1 1
< DR b [ e - ) ) 4 108 1943

1 1
L[ @) | £ 0F) (1= £7) | £ 05) L], > 0
Where I is katugampola fractional integral operator and F is Raina’s function.

Proof. As Theorem 2.7

g0 + (8 =) (FZn)P) +8(h = (5 —)(FZn)P) P 1T ()
P (B =)FE0)0)e
pre g(vp)+p1a g(vp)
[ R L N (R G TS L
[(Vg _V€>(ngn )P]

1
- S [P (1= (G L )P+ (EF L )PVR) -
g((CFEm)PR + (1= (CF {y)P)h)ag
Using Holder’s inequality and the y-Convexity of |g/|7, we get
g0+ (=) (2P +e(h — (B =) Eq)P) B p* (@)
op [ =v)(FE.n )P

pro (Y pro
[I by 02

(= (F&n)P (V5] ([VTHF?,n)”(V‘z’*V’f)}%)’

PPV
< H TN [ otactoay g1 (g 20008+ (CF 20

(04
H 1S ((CFZam)PW 4+ (1= (CF2.0)P0E) N1dg
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| g+ (5 =V (F2.0)P) +g(h — (8 =) (F2.m)P) e 1(at)

P RCEAIEGE
prx g(vp)+pla g(vp) |
[ A L (A A 0 L

- (5 =) (F2n)P]
a

<[ QP (1~ (€ LW (CF 2 PR 1
s [ FUEr )P+ (- P 9l

| SO+ (5 =P 2P+ =08 ) 8a)?)  p ()
*P [(Vg_vl)(Fg . )P1*
I g(vP)+p1a g(vp) |
[ “ <f’s’vn>”<wv H%) : ([v”+<r?m>ﬂ<v§fv’i>1%r :
P
N o

/ 1<¢P<“+1>—1[h<1 -] g’<v1> 1 +h(EP) | ¢/ 05) L]
S P [ 00) 1 4001 - ) | 08) Flag:

v =Y (P2 )P 1ol L
S o) L @ 1 =g7) | 00) 17 +(EP) |/ (05) lag:
S PG |00 1 400 - €) | 08) Jag:
This completes the proof. [

Remark 2.12. 1. In Theorem 2.11 using the assumption h(§) =  and (Fg )P (V)=o) =) — vl we
will get Theorem10 in [7] for u = 0.

2. Ifwetake h(§) =1, (F?,n )P(v) —vP) =08 — vl and g =1 in Theorem 2.11 ,we obtain Lemma 2.9

Theorem 2.13. Let o, p > 0 with a bounded sequence of real numbers ¥ = (9(0),.......,3(K),.....). Let

g:[v ’l),vg] — R be a differential function on (v’l),vg) with 0 < vy <wy. If |g/|? is a y-Convex function for

q > 1 then

|g(V’f+(vg—v1)(Fg,n) ) +8(h — (5 =) (Fg.q)P) p* I (a)
op RCEIGEIE
pro WP pro , WP
[Iu (r?mw(va by S0 I([vﬁ’+<r2m>f’<v§fvﬁ’>}ﬁ)*g( 1)] |
—Vp 5 1 1 / / 1
<1 lz)‘( Zn)’ ][sp<a+1l>—s+1]s[/o (h(1=£P) I/ 07+ h(GP)lg 04)[9)ag]

+ 1(h(C”)\g’(V’f)lq+h(1 — Pl (4)I)d)56.m >0
0

1,1 _ . . . . . .
where <+ i 1, I is katugampola fractional integral operator and F is Raina’s function.
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Proof. Using Holder’s inequality and the y-Convexity of |g/|? in Theorem 2.7, we get

| g+ (A —)(F2)P)+80E =05 —)(FZm)P)  p* (@)
op (V5 V) (F &Pl

g(V’f)] |

r* g(vh) +°P1*
[ (WE—=(F 2P (=8P )+ 20 (4 2P (=P )

% P /1
< QNS ¥ ooty (1 (61 2 )08+ (01 2 P8

18 (CF )P+ (1= (EFEm)P3) N1dg

Vo P 19, P 1 1
<1 lff e, JA el / 1S~ (CF W+ CF )P 70

([ 18 2P+ = (CF L)1) 10401
08— AN La)]

<
- o [sp(a+l)—s+1

@ =

]

| /0 (1= 2P) g/ 00+ A(LP) g ()L
1 ()8 0P) 4+ (1 = P) g ()L
0

| g+ (A= v)(FEm)P) +8(E =5 -N)(FZn)?)  p* 'I(a)
ap (05 =D Ea)Pre

p o g vP +p1a g(vp
[ ([V’Q*(F?an)"(vgfvif)]%)*( ) ([Vﬁ’+(F?7n)”(V’2’*V’f)}%)* i

(5 =) 0)P] 1 11 1
< K _P (P q P (P q
< - @i srt) U, (0= NI+ HEP)I (02

! 1
[ (&) (D)1 +h(1 = 6P g 0B) ) )
This completes the proof. []

Remark 2.14. Using the assumption h(§) = § and (F’g,n )P (V) — V) =05 —vf in Theorem 2.13 we will
get Theorem11 in [7] for u =0

3. Application to Special Means

[13] For some positive real numbers vy, v2(vy # v2),v2 > vy, we shall assume the following special means.
(1) The arithmetic mean:

Vi +Wvy
A :A<V],V2> = 3
(2) The n-arithmetic mean for n € R/(—1,0):
R
A, :An(VhVZ) = %
(3) The logarithmic mean:
L:L(VI.V2) = 27N , V1 7&\/2

hle — lnv1



On Inequalities of Trapezium Type Via Fractional Integrals Operators 69

(4) The n-logarithmic mean for n € R/(—1,0):
VAR
(n+1)(Invy —Invy)
Proposition 3.1. Forvi,v, € R with vy > vi > 0, then we have the following inequality:
2
(n+1)(v2—vy)

L, = Ln(Vl-VZ) = »V1 7£ V2

Ln(Vl,V2)+

sB(2,n+1)Aq41)(v,v2) <A(v,v2)

Proof. In Theorem 1.9 with h({) = €, F?m (v2—vi) =vp—v; and a function g : [vy,vy] — R =x",(n €N)
we will get the required inequality. ]

Proposition 3.2. Forvi,vy € R withvy, > v >0, then

2p
(n+1)(v5 =)

Ln(vll)7vg)+ 2B(27n+2)A(n+2)<Vll)7vlz)) SA"(VI;?‘}IZ))

Proof. In Theorem 2.1 with h({) =, (F’g,n )p(vg — v’l)) = vg — v’f and a function g : [v;,»] — R =
X", (n € N) we will have the above inequality. O

4. Conclusion

In this article, we consider a new generalized form of convex functions which is known as y-convex functions.
In the achievement of our target, we have derived some new inequalities that deduced from the definition of
different fractional integral operators and the use of y-Convex functions. The results for y-convex functions
generalizing and enhancing the results and inequalities which are already existed in mathematical literature.
Others antecedently got for the Riemann-liouville fractional integrals. Specifically, our results focusing on
the most popular integral inequality which is known as Hermite-Hadamard inequality and three famous
fractional integrals. These results will serve as a motivation and prove benefical for future work in this field.
For the suitable selection of the function /() one can discover so many numerous results as particular cases.
This shows that the idea of generalized convexity is extremely wide and unifying. It is expected that this
article will provide new directions and ideas in fractional operators, special functions and related fields.
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