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 Abstract 
 
The study of an entirely new class of differential equations known as delay differential equations or difference differential 
equations has resulted from the development and application of automatic control systems (DDEs). Time delays are virtually 
always present in any system that uses feedback control. A time delay is required because it takes a finite amount of time to sense 
information and then react to it. In this investigation, we find the solution of fractional delay differential equations by using the 
reduced differential transform method. The results so obtained are in the form of series. It is observed that the proposed technique 
is accurate and convergent. MAPLE 17 is used to illustrate the results graphically. 
 
Keywords: Pantograph equations; Delay differential equation; Fractional differential equation; Reduced differential transform   

method. 

 

1.    Introduction 
Gorenflo and Mainardi [1] provided the fundamental definitions of functional calculus and its 

applications. In their lectures, they introduce the linear operators of functional integration and functional 

differentiation in the context of Riemann-Liouville fractional calculus. They paid special attention to the 

method of Laplace transforms for addressing these operators in a way that applied scientists could understand, 

avoiding pointless generalizations and unnecessary mathematical rigour. They used this method to provide 

analytical solutions to the simplest linear integral and differential equations of fractional order. They go over 

some of the author's applications of fractional calculus to some basic problems in continuum and 

statistical mechanics. The difficulties in continuum mechanics related to the mathematical modelling of 
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viscoelastic bodies and the unstable motion of a particle in a viscous fluid, known as the Basset problem. In 

the former analysis, fractional calculus leads them to introduce intermediate models of viscoelasticity, which 

generalise the classical spring-dashpot models. The latter analysis leads them to introduce a hydrodynamic 

model suitable for revisiting the classical theory of Brownian motion, which is a relevant topic in statistical 

mechanics. They explained the large tails in the velocity correlation and displacement variance using 

fractional calculus methods. They discuss the fractional diffusion-wave equation, which derived from the 

classical diffusion equation by substituting a fractional derivative of order with 0 < ܽ < 2 for the first-order 

time derivative [2]. 

R. Khalil [3] and colleagues defined fractional derivative and fractional integral in a novel way. The 

form of the definition demonstrates that it is the most natural and fruitful definition. The definition for 

0 ≤ ߙ < 1 corresponds to the classical definitions for polynomials (up to a constant). Furthermore, if ߙ =  1, 

the definition corresponds to the classical definition of the first derivative. They discussed several applications 

of fractional differential equations. [3]. In recent years, fractional calculus has been recognized as a powerful 

tool for studying the behaviour of numerous phenomena in science and engineering. In [4-7], some examples 

of fractional calculus applications are provided. Because of its widespread use, fractional differential 

equations have garnered the most attention of all fractional models. [8-10] discuss some outstanding research 

on the theoretical study of this family of equations.  

Following World War I, the development and use of automated control systems resulted in research 

into an entirely new class of differential equations known as delay differential equations or difference 

differential equations (DDE). Time delay is nearly always present in any system that uses feedback control. A 

time delay occurs when a certain amount of time is required to detect information and then react to it. Severe 

stability issues, on the other hand, emerge when many systems must be controlled at the same time. Pilot-

induced oscillations (PIO), for example, are accidental prolonged oscillations caused by the pilot's efforts to 

control the aircraft [11]. Fatemah and Dehghan addressed the various applications of the Delay Differential 

equation in science and engineering. They occur when the rate of change of a time-dependent process in its 

mathematical modelling is governed not only by its current state but also by a specific historical state. Recent 

research in domains as diverse as biology, economics, control, and electrodynamics has revealed that DDEs 

play a significant role in describing a wide range of phenomena. They are particularly important when ODE-

based models fail. In their study, they provided the solution of a delay differential equation using a homotopy 

perturbation approach, followed by various numerical demonstrations. These findings show that the suggested 

strategy is both successful and straightforward to implement [12]. 
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Asymptotic methods for singularly perturbed delay differential equations are more difficult to 

construct than approaches for ordinary differential equations. The applications of asymptotic approaches 

range from the obvious to the bizarre, and they demonstrate the general technical challenges that delay 

equations offer for the core methodology of the applied mathematician [13]. The method can easily apply to 

linear or nonlinear problems and is capable of reducing the size of computational work. In this work, 

additionally, analytical form solutions of two diffusion problems have been obtained and the solutions are 

compared very well with those obtained by decomposition method. Zhou [14], who solved linear and 

nonlinear initial value problems in electric circuit analysis, first introduced the concept of differential 

transform. "The differential transform is an iterative approach for generating Taylor series solutions of 

differential equations," says Jang [15]. This strategy decreases the size of the computational domain and is 

easily adaptable to a wide range of situations. Most of the researcher worked on the concept of fractional 

calculus and the solution of fractional differential equations, which can be seen [16-22]. 

Gusu et al. [23] discussed the new reduced differential transform technique (RDTM) to calculate analytical 

and semianalytical approximation solutions to fractional order Airy’s ordinary differential equations and 

fractional order Airy’s and Airy’s type partial differential equations according to specific beginning 

conditions. They found the proposed scheme is reliable, efficient to handled fractional type Airy’s type 

differential equations. Thangavelu and Padmasekaran [24] researched fractional-order partial differential 

equations with proportional delay, including modified Burger equations with proportional delay. Natural 

transform decomposition technique solutions are achieved in series form for both fractional and integer 

orders, demonstrating the proposed approach's increased convergence. Tahir et al. [25] solved the 

inhomogeneous fractional Cauchy–Riemann equation in both space and time variables using analytic Cauchy 

data using the vectorial fractional reduced differential transformed approach. They discovered that the 

solutions correspond well with the precise answer for ߙ = ߚ = 1. Shah et al. [26] investigated fractional-

order partial differential equations with proportional delay, including modified Burger equations with 

proportional delay. They solved these equations using the Natural transform decomposition technique. Natural 

transform decomposition technique solutions are achieved in series form for both fractional and integer 

orders, demonstrating the proposed approach's increased convergence. Many other researcher found the 

numerical solution of the fractional order differential equation with time delay, which can be seen in [27-36].  

Here we investigated the fractional delay differential equation by using the reduced differential transform 

method by considering different conditions and check the reliability and convergence of the proposed scheme. 
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2.   Definitions 
The following are some fundamental definitions of the RDT Method. 

2.1 Definition [37] 

If the function  ݔ)ݑ,  is analytic and continuously differentiated with respect to t, then let (ݐ

ܷ(ݔ) =
1
݇! ቆ

߲

ݔ߲ ,ݔ)ݑ ቇ(ݐ
௧ୀ

, (1) 

The converted functions are the ݐ − dimensional spectrum functionsܷ(ݔ). The original functions are 

denoted by the lower case  ݔ)ݑ, ,ݔ)ܷ whereas the modified functions are denoted by the upper case ,(ݐ   .(ݐ

2.2 Definition [37] 

ܷ(ݔ)  has a differential inverse transform that is defined as follows: 

,ݔ)ݑ (ݐ =  ܷ(ݔ)ݐ,
∞

ୀ

 (2) 

When equations (1) and (2) are combined, the following result may be obtained: 

,ݔ)ݑ (ݐ = 
1
݇! ቆ

߲

ݔ߲ ,ݔ)ݑ ቇ(ݐ
௧ୀ

,ݐ
∞

ୀ

 (3) 

The notion of the reduced differential transform technique is derived from the power series expansion of a 

function, according to the preceding definitions. The reduced differential transform technique is used to 

conduct the following mathematical tasks. 

Table 1. REDUCED DIFFERENTIAL TRANSFORM (RDT) METHOD [37]. 

Function from  Transformed form  

,ݔ)ݑ  (ݐ
ܷ(ݔ) =

1
݇!ቆ

߲

ݔ߲ ,ݔ)ݑ ቇ(ݐ
௧ୀ

, 

,ݔ)ݓ (ݐ = ,ݔ)ݑ (ݐ ± ,ݔ)ݒ (ݔ)ܹ (ݐ = ܷ(ݔ) ± ܸ(ݔ) 

,ݔ)ݓ (ݐ = ,ݔ)ݑܿ (ݔ)ܹ (ݐ = ܿ ܷ(ݔ) 
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,ݔ)ݓ (ݐ = ,ݔ)ݑ ,ݔ)ݒ(ݐ  (ݐ

ܹ(ݔ) = ܷ ܸି



ୀ

=  ܸ ܷି



ୀ

 

,ݔ)ݓ (ݐ =
߲

ݕ߲ ݑ
,ݔ) (ݔ)ܹ (ݐ = (݇ + 1)(݇ + 2) … (݇ + ݊) ܷା(ݔ) 

,ݔ)ݓ (ݐ = ,ݔ)ݑݐݔ (ݔ)ܹ (ݐ = ݔ ܷି(ݔ) 

,ݔ)ݓ (ݐ =  W୩(x)ݐݔ = x୫δ(k − n),δ(k) = ൜1, ݇ = 0
0, ݇ ≠ 0 

,ݔ)ݓ (ݐ =
߲ேఈ

ேఈݔ߲ ݑ
,ݔ) (ݔ)ܹ (ݐ =

Γ(kα+ Nα + 1)
Γ(݇ߙ + 1) ܷାே(ݔ) 

,ݔ)ݓ (ݐ = ݁௫ 
ܹ(ݔ) =

ܽ

݇!  

,ݔ)ݓ (ݐ = sin(ݔ) 
ܹ(ݔ) = −

1
݇! ቆ

߲

ݔ߲ sin(ݔ)ቇ 

,ݔ)ݓ (ݐ = cos(ݔ) 
ܹ(ݔ) = −

1
݇!ቆ

߲

ݔ߲ cos(x)ቇ 

,ݔ)ݓ (ݐ = ݁ି௫ା  
ܹ(ݔ) = −

1
݇!

(−1)݁ 

,ݔ)ݓ (ݐ = ݔ)݂ − .(ݎ ݎ ≥ 1 
ܹ(ݔ) =  (−1)୦భି୩



୦భୀ୩

൬
hଵ
k ൰

(r)୦భି୩Y(hଵ), N → ∞ 

 

3.   Implementation of RDTM 

Eight multi-pantograph delay differential equations presented in this part to demonstrate the RDTM's 

efficiency by using Maple 17. The series solution obtained is compared to exact solution and found to be in 

good agreement with one another. 

3.1 Example-A [18] 

Consider the first-order LDDE of the pantograph type  
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dy(x)
dx = ൬

1
2൰ e

୶
ଶy ቀ

x
2ቁ+ ൬

1
2൰y(x), 0 < ݔ < 1, (4) 

subject to the condition 

y(0) = 1, 

On equation (4), we obtain the following Recurrence relation using the fractional differential transform 

presented in table 1 

ܻ(݇ + 1) =
Γ(݇ߙ + 1)

2Γ(kα + α + 1)


1
2݈!ܻ

(݇ − ݈) + ܻ(݇)


ୀ

൩ , ݇ ≥ 0,ܻ(0) = 1, (5) 

Using the recurrence relation (5), we can see that 

ܻ(1) =
1

Γ(α + 1), 
 

ܻ(2) =
1
2

Γ(α+ 1) ൬1
2 + 3

2Γ(α+ 1)൰

Γ(2α+ 1) , 
 

ܻ(3) =
1
2

Γ(2α+ 1)൮1
8 + 5

8
Γ(α+ 1) ൬1

2 + 3
2Γ(α+ 1)൰

Γ(2α + 1) + 1
4Γ(α+ 1)൲

Γ(3α+ 1) , … 

 

By using the inverse differential transform of Y (k), which is 

(ݔ)ݕ = ܻ(݇)ݔఈ
∞

ୀ

; 
 

As a result, we arrive to the following series solution: 
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(ݔ)ݕ = ܻ(݇)ݔఈ
∞

ୀ

= 1 + ൬
1

Γ(α+ 1)൰ݔ
ఈ + ൮

1
2

Γ(α+ 1) ൬1
2 + 3

2Γ(α+ 1)൰

Γ(2α+ 1) ൲ݔଶఈ

+

⎝

⎜
⎜
⎜
⎜
⎛

1
2

Γ(2α+ 1)൮1
8 + 5

8
Γ(α + 1) ൬1

2 + 3
2Γ(α+ 1)൰

Γ(2α+ 1) + 1
4Γ(α+ 1)൲

Γ(3α+ 1)

⎠

⎟
⎟
⎟
⎟
⎞

ଷఈݔ + ⋯ 

 

(ݔ)ݕ = ݁௫ is exact solution. 

The graphs below show for various fractional values of ߙ 

 

Fig. 1. For different fractional orders, a graph of exact and approximate solutions. 

3.2 Example-B [19]  

Consider the linear pantograph equation  

(ݐ)′ݑ = (ݐ)ݑ− +
1

ݑ10 ൬
ݐ
5൰ −

1
10݁

ି௧ହ, 0 ≤ ݐ ≤ 1, (6) 

depends on the condition 
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u(0) = 1.  

On equation (6), we obtain the following Recurrence relation using the fractional 

differential transform presented in table 1: 

ܷ(݇ + 1) =
Γ(݇ߙ + 1)

Γ(kα + α + 1)
൦−ܷ(݇) +

1
10 ൬

1
5൰



ܷ(݇) −
1

10
ቀ1

5ቁ


݇!
൪ ,݇ ≥ 0,ܻ(0) = 1, 

(7) 

Utilizing the recurrence relation, we can see that 

ܷ(1) = −
1

Γ(α+ 1),  

ܷ(2) =
Γ(α+ 1) ൬ 49

50Γ(α+ 1) + 1
50൰

Γ(2α+ 1) , 
 

ܷ(3) =

Γ(2α+ 1)൮−249
250

Γ(α+ 1)൬ 49
50Γ(α+ 1) + 1

50൰
Γ(2α+ 1) − 1

500൲

Γ(3α+ 1) , … 

 

By using the inverse differential transform of Y (k), which is; 

(ݐ)ݑ = ܷ(݇)ݐఈ
∞

ୀ

. 
 

As a result, we arrive to the following series solution 

(ݐ)ݑ = ܷ(݇)ݐఈ = 1 −
1

Γ(α+ 1)

∞

ୀ

ఈݐ +
Γ(α+ 1) ൬ 49

50Γ(α+ 1) + 1
50൰

Γ(2α+ 1) ଶఈݐ

+

Γ(2α+ 1)൮−249
250

Γ(α + 1) ൬ 49
50Γ(α+ 1) + 1

50൰
Γ(2α+ 1) − 1

500൲

Γ(3α+ 1) ଷఈݐ

+ ⋯ 

 

(ݐ)ݑ = exp(−t) is exact solution. The graphs below show for various fractional values of ߙ 
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Fig. 2. For different fractional orders, a graph of exact and approximate solutions. 

3.3 Example-C [20]  

Consider the equation for the Linear 2nd-order Multi-Pantograph.  

dଶy(x)
dxଶ =

3
4 y(x) + y ቀ

x
2ቁ − xଶ + 2,0 ≤ x ≤ 1, (8) 

subject to the condition 

y(0) = 0,
dy(0)

dx = 0.  

On equation (84.5), we obtain the following Recurrence relation using the fractional differential transform 

presented in table 1 

Y(k + 2) =
Γ(݇ߙ + 1)

Γ(kα+ 2α+ 1)൬
3
4ܻ

(݇) +
1

2 ܻ
(݇)− ݇)ߜ − 2) + ൰(݇)ߜ2 , k

≥ 0, Y(0) = 0, Y(1) = 0. 
(9) 

Utilizing the recurrence relation(9), we can see that 

ܻ(2) =
2

Γ(2α+ 1) ,ܻ(3) = 0,  

ܻ(4) = ൬
Γ(2α+ 1)
Γ(4α+ 1)൰ ൬

2
Γ(2α+ 1)− 1൰,  
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ܻ(5) = 0,  

ܻ(6) =
13
16 ൬

Γ(4α+ 1)
Γ(6α+ 1)൰ ൬

Γ(2α+ 1)
Γ(4α+ 1)൰൬

2
Γ(2α+ 1)− 1൰,  

ܻ(7) = 0, …  

By using the inverse differential transform of Y (k), which is 

(ݔ)ݕ = ܻ(݇)ݔఈ
∞

ୀ

. 
 

As a result, we arrive to the following series solution: 

(ݔ)ݕ = ܻ(݇)ݔఈ
∞

ୀ

= ൬
2

Γ(2α+ 1)൰ ݔ
ଶఈ + ൬

Γ(2α+ 1)
Γ(4α+ 1)൰൬

2
Γ(2α+ 1)− 1൰ݔସఈ

+
13
16 ൬

Γ(4α+ 1)
Γ(6α+ 1)൰ ൬

Γ(2α+ 1)
Γ(4α+ 1)൰൬

2
Γ(2α+ 1) − 1൰ݔఈ + ⋯ 

 

(ݔ)ݕ =  .ߙ ଶ is exact solution. The graphs below show for various fractional values ofݔ

 

Fig. 3 For different fractional orders, a graph of exact and approximate solutions. 

3.4 Example-D [21]  

Consider the second order pantograph type delay differential equation. 
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݀ଶ(ݔ)ݕ
ଶݔ݀ =

ݕ݀
ݔ݀ + ଶݕ2 ቀ

ݔ
2ቁ − ݕ3 ቀ

ݔ
3ቁݕ ቀ

ݔ
2ቁ+ ݔ2 + 2, (10) 

Subject to the conditions 

y(0) = 0,
dy(0)

dx = 0.  

On equation (9), we obtain the following Recurrence relation using the fractional differential transform 

presented in table 1. 

Y(k + 2) =
Γ(݇ߙ + 1)

Γ(kα+ 2α+ 1)൮(k + 1)Y(k + 1)

+ 2
1
2୪ Y(l)

1
2୩ି୪ Y(k − l)− 3

1
3୪ Y(l)

1
3୩ି୪ Y(k − l)

୩

୪ୀ

୩

୪ୀ

− 2δ(k − 1) + 2δ(k)ቍ , k ≥ 0, Y(0) = 0, Y(1) = 0, 

(11) 

Utilizing the recurrence relation (11), we can see that 

ܻ(2) =
2

Γ(2α+ 1) ,ܻ(3) =
Γ(α+ 1)൬ 4

Γ(2α+ 1)− 2൰

Γ(3α+ 1) , 
 

ܻ(4) =
3Γ(2α+ 1)Γ(α+ 1) ൬ 4

Γ(2α+ 1) − 2൰

Γ(4α+ 1)Γ(3α+ 1) , 
 

 

ܻ(5) =
12Γ(2α+ 1)Γ(α+ 1) ൬ 4

Γ(2α+ 1)− 2൰

Γ(5α+ 1)Γ(4α+ 1) , … 
 

By using the inverse differential transform of Y (k), which is 
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(ݔ)ݕ = ܻ(݇)ݔఈ
∞

ୀ

. 
 

As a result, we arrive to the following series solution 

(ݔ)ݕ = ܻ(݇)ݔఈ
∞

ୀ

=
2

Γ(2α + 1) ݔ
ଶఈ +

Γ(α+ 1) ൬ 4
Γ(2α+ 1)− 2൰

Γ(3α + 1) ଷఈݔ

+
3Γ(2α+ 1)Γ(α+ 1) ൬ 4

Γ(2α+ 1) − 2൰

Γ(4α+ 1)Γ(3α+ 1) ସఈݔ

+
12Γ(2α+ 1)Γ(α+ 1) ൬ 4

Γ(2α+ 1)− 2൰

Γ(5α+ 1)Γ(4α+ 1) ହఈݔ + ⋯ 

 

(ݔ)ݕ =  .ߙ ଶ is exact solution. The graphs below show for various fractional values ofݔ

 

Fig. 4. For different fractional orders, a graph of exact and approximate solutions. 

 

3.5 Example-E [18] 

The linear pantograph equation is as follows  
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(ݐ)′′ݑ = 4݁ି
௧
ଶ sin ൬

ݐ
2൰ݑ ൬

ݐ
2൰ , 0 ≤ ݐ ≤ 1, (12) 

subject to the conditions  

u(0) = 1, u′(0) = −1.  

On equation (11), we obtain the following Recurrence relation using the fractional differential 

transform presented in table 1. 

U(k + 2)

=
Γ(݇ߙ + 1)

Γ(kα+ 2α+ 1) 4   ൬
−1
2 ൰

୰భ
൬

1
2൰

୩ି୰భ 1
rଵ! (rଶ − rଵ)! sinቆ

(rଶ − rଵ)π
2 ቇU(k

୰మ

୰భୀ

୩

୰మୀ

− rଶ) , k ≥ 0, U(0) = 1, U(1) = −1 

(13) 

Utilizing the recurrence relation (12), we can see that 

ܷ(2) = 0,ܷ(3) =
2Γ(α+ 1)
Γ(3α+ 1) ,ܷ(4) = −

2Γ(2α+ 1)
Γ(4α+ 1) , … 

 

By using the inverse differential transform of Y (k), which is;; 

(ݐ)ݑ = ܷ(݇)ݐఈ
∞

ୀ

; 
 

As a result, we arrive to the following series solution: 

(ݐ)ݑ = ܷ(݇)ݐఈ
∞

ୀ

= 1 − ఈݐ +
2Γ(α+ 1)
Γ(3α+ 1) ݐ

ଷఈ −
2Γ(2α+ 1)
Γ(4α+ 1) ସఈݐ +

2
3
Γ(3α+ 1)
Γ(5α+ 1) ݐ

ହఈ

+ ⋯ 

 

(ݐ)ݑ = exp(−t)cos (t) is exact solution. 

The graphs below show for various fractional values of ߙ. 
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Fig. 5. For different fractional orders, a graph of exact and approximate solutions. 

3.6  Example-F [21] 

 The nonlinear DDE with unbounded delay is considered. 

݀ଶݕ
ଶݔ݀ = 1 − ଶݕ2 ቀ

ݔ
2ቁ ,   0 ≤ ݔ ≤ 1, (14) 

subject to the conditions  

y(0) = 1,
dy(0)

dx = 0.  

On equation (13), we obtain the following Recurrence relation using the fractional differential transform 

presented in table 1 

Y(k + 2) =
Γ(݇ߙ + 1)

Γ(kα + 2α + 1)ቌδ(k)− 2
1

2୩ Y(l)Y(k− l)
୩

୪ୀ

ቍ , k ≥ 0, Y(0)

= 1, Y(1) = 0. 

(14) 

Utilizing the recurrence relation (14), we can see that 

ܻ(2) = −
1

Γ(2α + 1) ,ܻ(3) = 0,ܻ(4) = ൬
Γ(2α + 1)
Γ(4α + 1)൰൬

1
Γ(2α + 1)൰ ,ܻ(5) = 0, … 

 

By using the inverse differential transform of Y (k), which is;; 
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(ݔ)ݕ = ܻ(݇)ݔఈ
∞

ୀ

; 
 

As a result, we arrive to the following series solution: 

(ݔ)ݕ = ܻ(݇)ݔఈ
∞

ୀ

= 1 −
ଶఈݔ

Γ(2α + 1) + ൬
Γ(2α + 1)
Γ(4α + 1)൰ ൬

1
Γ(2α + 1)൰ݔ

ସఈ + ⋯ 
 

(ݔ)ݕ = cos (x) is exact solution. The graphs below show for various fractional values of ߙ. 

 

Fig. 6. For different fractional orders, a graph of exact and approximate solutions. 

3.7  Example-G [21] 

Consider the following third-order nonlinear Pantograph DDE  

݀ଷݕ
ଷݔ݀ = −1 + ଶݕ2 ቀ

ݔ
2ቁ, (15) 

Subject to the condition 

y(0) = 0,
dy(0)

dx = 1,
݀ଶ(0)ݕ
ଶݔ݀ = 0, 

 

On equation (15), we obtain the following Recurrence relation using the fractional differential transform 

presented in table 1. 
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Y(k + 3) =
Γ(݇ߙ + 1)

Γ(kα + 3α + 1)ቌ−δ(k) + 2
1

2୩ Y(l)Y(k − l)
୩

୪ୀ

ቍ , k ≥ 0, Y(0)

= 0, Y(1) = 1, Y(2) = 0 

(16) 

Utilizing the recurrence relation (16), we can see that 

ܻ(3) = −
1

Γ(3α+ 1) ,ܻ(4) = 0,ܻ(5) =
1
2
Γ(2α + 1)
Γ(5α + 1) ,ܻ(6) = 0,ܻ(7)

= −
1
4

Γ(4α+ 1)
Γ(7α+ 1)Γ(3α+ 1) ,ܻ(8) = 0, … 

 

By using the inverse differential transform of Y (k), which is 

(ݔ)ݕ = ܻ(݇)ݔఈ
ஶ

ୀ

. 
 

As a result, we arrive to the following series solution: 

(ݔ)ݕ = ܻ(݇)ݔఈ
ஶ

ୀ

= ఈݔ −
1

Γ(3α+ ݔ(1
ଷఈ +

1
2
Γ(2α + 1)
Γ(5α + 1) ݔ

ହఈ

−
1
4

Γ(4α+ 1)
Γ(7α+ 1)Γ(3α+ 1) ݔ

ఈ + ⋯ 

 

(ݔ)ݕ = sin (ݔ) is exact solution. The graphs below show for various fractional values of ߙ. 

 

Fig. 7. For different fractional orders, a graph of exact and approximate solutions. 
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3.8  Example-H [18, 20]  

 Consider the 3rd-order Constant LDDE  

݀ଷݕ
ଷݔ݀ + (ݔ)ݕ + ݔ)ݕ − 0.3) = ݁ି௫ା.ଷ, 0 < ݔ < 1, (17) 

subject to the conditions  

y(0) = 1,
dy(0)

dx = −1,
݀ଶ(0)ݕ
ଶݔ݀ = 1, 

 

On equation (17), we obtain the following Recurrence relation using the fractional differential transform 

presented in table 1. 

Y(k + 3) =
Γ(݇ߙ + 1)

Γ(kα + 3α + 1)ቌ
1
k! (−1)୩e.ଷ − Y(k)

−  (−1)୦భି୩
ଵ

୦భୀ୩

൬
hଵ
k ൰ (0.3)୦భି୩൱ , k ≥ 0, Y(0) = 1, Y(1)

= −1, Y(2) = 1 

(18) 

Utilizing the recurrence relation (18), we can see that 

ܻ(3) = −
0.4193733239
Γ(3α+ 1) , 

 

ܻ(4) = −
0.941528680Γ(α+ 1)

Γ(4α+ 1) , 
 

ܻ(5) = −
0.2810318460Γ(2α+ 1)

Γ(5α + 1) , … 
 

By using the inverse differential transform of Y (k), which is;; 

(ݔ)ݕ = ܻ(݇)ݔఈ
ஶ

ୀ

. 
 

As a result, we arrive to the following series solution: 
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(ݔ)ݕ = ܻ(݇)ݔఈ
ஶ

ୀ

= 1 − ఈݔ + ଶఈݔ −
0.4193733239
Γ(3α+ 1) ଷఈݔ

−
0.941528680Γ(α+ 1)

Γ(4α+ 1) ସఈݔ −
0.2810318460Γ(2α+ 1)

Γ(5α+ 1) ହఈݔ + ⋯ 

 

(ݔ)ݕ = exp(−ݔ) is exact solution, The graphs below show for various fractional values of ߙ. 

 

Fig. 8. For different fractional orders, a graph of exact and approximate solutions. 

4.  Conclusion 
To solve fractional delay differential equations, the reduced differential transform method is utilized. 

It has been discovered that solving non-linear fractional differential equations with this method is quite simple 

and does not require the use of any discretization or Adomian polynomial. The resulting results converge to 

an exact answer. The exact and 10th iteration of the RDT approach are graphically compared. The proposed 

technique is found to be accurate and convergent for first-order and higher-order linear and non-linear 

problems. 
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