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 Abstract 
 
This paper applies Homotopy Analysis Method (HAM) to obtain analytical solutions of system of non-linear partial differential 

equations. Numerical results clearly reflect complete compatibility of the proposed algorithm and discussed problems. Moreover, 

the validity of the present solution and suggested scheme is presented and the limiting case of presented findings is in excellent 

agreement with the available literature. The computed solution of the physical variables against the influential parameters is 

presented through graphs. Several examples are presented to show the efficiency and simplicity of the method. 
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1.     Introduction 
Differential equations arise in almost all areas of the applied, physical and engineering sciences [1-29]. Recently [16-

21], lot of attention is being paid on fractional differential equations and it has been observed that number of physical 

problems is better modeled by such equations. Several numerical and analytical techniques including Perturbation, 

Modified Adomian’s Decomposition (MADM), Variational Iteration (VIM), Homotopy Perturbation (HPM) have been 

developed to solve such equations, see [16-21] and the references therein. Inspired and motivated by the ongoing 

research in this area, we apply Homotopy Analysis Method (HAM) [1-21] to obtain analytical solutions of non-linear 

system of partial differential equations. 
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For analytical solution, solving nonlinear equations is more difficult than solving linear ones. Generally, there are two 

standards for satisfactory solutions. First, it can always provide analytical approximations efficiently and, second, it 

can give accurate enough analytical approximations for all pertinent parameters appearing in the governing expressions 

along with associated conditions. By using these two standard criteria, many numerical and analytical techniques are 

used to solve nonlinear equations. Among these, the homotopy analysis method (HAM) is one of the most powerful 

tools for solving nonlinear differential equations. Mostly, HAM is applied to boundary layer equations. Recently, the 

Homotopy analysis Method (HAM) was used by Marinca and Herisanu. [30]. Few relevant studies concerning the 

HAM are Refs. [31-32]. Numerical results are very encouraging and reveal the efficiency of proposed scheme (HAM).  

1. Homotopy Analysis Method (HAM) [1-29] 

We consider the following equation 

  ෩ܰ[ݑ(߬)] = 0,                                                                                                                                                                        (1) 

where ෩ܰ is a nonlinear operator, ߬ denotes dependent variables and ݑ(߬) is an unknown function. For simplicity, we 

ignore all boundary and initial conditions, which can be treated in the similar way. By means of( HAM ) Liao  

constructed zero-order deformation equation 

 (1 − (;߬)∅]ℒ( − [(߬)ݑ = ℏ ෩ܰ[∅(߬;  (2)                                                                                                                  ,[(

where ℒ is a linear operator, ݑ(߬) is an initial guess, ℏ ≠ 0 is an auxiliary parameter and  ∈ [0,1] is the embedding 

parameter. It is obvious that when p=0 and 1, it holds  

 ℒ[∅(߬; 0) − [(߬)ݑ = 0   ⟹   ∅(߬; 0) =  (߬),                                                                                                            (3)ݑ

       ℏ ෩ܰ[∅(߬; 1)]  = 0 ⟹  ∅(߬; 1) =  (4)                                                                                                                           ,(߬)ݑ 

respectively. The solution ∅(߬; ;߬)∅  Liao [18] expanded .(߬)ݑ (߬) to solutionݑ varies from initial guess (  in (

Taylor series about the embedding parameter   

   

∅(߬; ( = (߬)ݑ +  (߬)ݑ
ஶ

ୀଵ

,                                                                                                                                                   (5) 

where  

(߬)ݑ =  
1
݉!

 
߲∅(߬; (
߲

 |
 = 0                                                                                                                                                 (6) 

The convergence of (5) depends on the auxiliary parameter ℏ. If this series is convergent at p=1, 
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∅(τ; 1) = u(τ) +  u୫(τ)
ஶ

୫ୀଵ

,                                                                                                                                                          (7) 

Define vector 

ሬ⃗ݑ   = ,(߬)ଶݑ,(߬)ଵݑ,(߬)ݑ} ,(߬)ଷݑ … … …  {(߬)ݑ,

If we differentiate the zeroth-order deformation equation Eq. (2) ݉-times with respect to  and then divide them ݉! 

and finally set  = 0, we obtain the following ݉th-order deformation equation 

  ℒ[ݑ(߬) − ܺݑିଵ(߬)] = ℏℜ(ݑሬ⃗ ିଵ),                                                                                                                        (8) 

where  

ℜ(ݑሬ⃗ ିଵ) =
1

(݉− 1)!
 
߲ିଵ ෩ܰ[∅(߬; [(

ିଵ߲  |
 = 0                                                                                                                   (9) 

and  

ܺ = ቄ0,      ݉ ≤ 1,
1,       ݉ > 1,                                                                                                                                                                 (10)  

.ݍܧ ݂ ݁݀݅ݏ ℎܿܽ݁ (1−)^ܮ ℎݐ݅ݓ ݕ݈݅ݐ݈ݑ݉ ݁ݓ ݂ܫ   th order deformation equation ݉ ݃݊݅ݓ݈݈݂ ℎ݁ݐ ݊݅ܽݐܾ ݈݈݅ݓ ݁ݓ,(8)

(߬)ݑ  = ܺݑିଵ(߬) + ℏ ℜ ሬ⃗ݑ)  ିଵ) 

 

2. Numerical Applications 

 In this section, we apply Homotopy Analysis Method (HAM) on the required problems. Numerical results are highly 

encouraging.    
 

 Example 1:  consider the following system of nonlinear partial differential equations, 

௧ݑ + ௫ݒ௫ݑ + ௬ݒ௬ݑ + ݑ = 0, 

௧ݒ + ௫ݓ௫ݒ − ௬ݓ௬ݒ − ݒ = 0, 

௧ݓ + ௫ݑ௫ݓ + ௬ݑ௬ݓ − ݓ = 0, 

subject to the initial condition 
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,ݔ)ݑ ,ݕ 0) = ݁௫ା௬,   

,ݔ)ݒ ,ݕ 0) = ݁௫ି௬, 

,ݔ)ݓ ,ݕ 0) = ݁ି௫ା௬, 

To solve the above system of equations by HAM, the linear operator is defined as 

,ݕ,ݔ)ܷ]ଵܮ [(ݍ;ݐ =
߲
ݐ߲

,ݕ,ݔ)ܷ] ;ݐ ଵିଵܮ                         ,[(ݍ = න(. ݐ݀(
௧



, 

,ݕ,ݔ)ܸ]ଶܮ ;ݐ [(ݍ =
߲
ݐ߲

,ݕ,ݔ)ܸ] ;ݐ ଶିଵܮ                         ,[(ݍ = න(. ݐ݀(
௧



, 

,ݕ,ݔ)ܹ]ଷܮ ;ݐ [(ݍ =
߲
ݐ߲

,ݕ,ݔ)ܹ] ;ݐ ଷିଵܮ                         ,[(ݍ = න(. ݐ݀(
௧



, 

With the property 

ଵ[ܿ]ܮ = ଶ[ܿଵ]ܮ      ,0 = ଷ[ܿଶ]ܮ       ,0 = 0,  where ܿ, ܿଵ , ܿଶ are integral constants and the non-linear operator is defined 

a 

ଵܰ[ܷ(ݕ,ݔ, ;ݐ [(ݍ =
߲
ݐ߲
,ݕ,ݔ)ܷ ;ݐ (ݍ +

߲
ݔ߲

,ݕ,ݔ)ܷ ;ݐ (ݍ
߲
ݔ߲

,ݕ,ݔ)ܸ ;ݐ (ݍ +
߲
ݕ߲

,ݕ,ݔ)ܷ ;ݐ (ݍ
߲
ݕ߲

,ݕ,ݔ)ܸ (ݍ;ݐ + ,ݔ)ܷ ,ݕ ;ݐ  ,(ݍ

ଶܰ[ܸ(ݕ,ݔ, [(ݍ;ݐ =
߲
ݐ߲
,ݕ,ݔ)ܸ ;ݐ (ݍ +

߲
ݔ߲

,ݕ,ݔ)ܸ ;ݐ (ݍ
߲
ݔ߲

,ݕ,ݔ)ܹ ;ݐ (ݍ −
߲
ݕ߲

,ݕ,ݔ)ܸ ;ݐ (ݍ
߲
ݕ߲

,ݕ,ݔ)ܹ ;ݐ (ݍ − ,ݕ,ݔ)ܸ ;ݐ  ,(ݍ

ଷܰ[ܹ(ݕ,ݔ, ;ݐ [(ݍ

=
߲
ݐ߲
,ݕ,ݔ)ܹ ;ݐ (ݍ +

߲
ݔ߲

,ݕ,ݔ)ܹ ;ݐ (ݍ
߲
ݔ߲

,ݕ,ݔ)ܷ (ݍ;ݐ +
߲
ݕ߲

,ݕ,ݔ)ܹ ;ݐ (ݍ
߲
ݕ߲

,ݕ,ݔ)ܷ ;ݐ (ݍ

,ݕ,ݔ)ܹ− ;ݐ  ,(ݍ

 

The zeroth order deformation is, 

(1 − ,ݕ,ݔ)ଵൣܷܮ(ݍ ;ݐ ,ݔ)ݑ—(ݍ ,ݕ ൧(ݐ = ℎ௨ݍ ଵܰ [ܷ(ݕ,ݔ, ;ݐ ,ݕ,ݔ)ܸ,(ݍ ;ݐ   (11)                                                              ,[(ݍ

(1− ,ݔ)ܸ]ଶܮ(ݍ ,ݕ ;ݐ ,ݕ,ݔ)ݒ—(ݍ [(ݐ = ℎ௩ݍ ଶܰ [ܸ(ݕ,ݔ, ;ݐ ,ݕ,ݔ)ܹ,(ݍ ;ݐ  (12)                                                          ,[(ݍ

(1 − ,ݕ,ݔ)ܹ]ଷܮ(ݍ ,ݕ,ݔ)ݓ—(ݍ;ݐ [(ݐ = ℎ௪ݍ ଶܰ[ܹ(ݕ,ݔ, ;ݐ ,ݕ,ݔ)ܷ,(ݍ ;ݐ  (13)                                                       ,[(ݍ
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where ݍ ∈ [ 0 , 1 ] is an ebeding parameter,ℎ௨,ℎ௩ ,ℎ௪  ≠ 0 are  non-zero auxiliary parameters; 

,ݕ,ݔ)ݑ ,(ݐ ,ݕ,ݔ)ݒ ,ݕ,ݔ)ݓ,(ݐ  .are initial guess (ݐ

for ݍ =  0       ܷ(x, y, t; 0) = ,(xݑ  y, t),   ܸ(x, y, t; 0) = ,(xݒ  y, t),   ܹ(x, y, t; 0) = ,(xݓ  y, t),  

= ݍ        1       ܷ(x, y, t; 1) = ,x)ݑ  y, t),     ܸ(x, y, t; 1) = ,x)ݒ  y, t),     ܹ(x, y, t; 1) = ,x)ݓ  y, t),  

 

thus as ݍ  increses from 0 to 1 the solution ܷ(ݕ,ݔ, ;ݐ ,ݕ,ݔ)ܸ,(ݍ ,ݕ,ݔ)ܹ,(ݍ;ݐ ;ݐ (ݍ  varies from the initial guess 

,ݕ,ݔ)ݑ ,(ݐ ,ݕ,ݔ)ݒ ,ݕ,ݔ)ݓ,(ݐ ,ݕ,ݔ)ݑ to the solution (ݐ ,(ݐ ,ݕ,ݔ)ݒ ,ݕ,ݔ)ݓ,(ݐ  By Taylor series expansion, we have .(ݐ

,ݕ,ݔ)ܷ ;ݐ (ݍ = ,ݕ,ݔ)ܷ ;ݐ 0) + డ ݍ
డ௧
,ݕ,ݔ)ܷ ;ݐ (ݍ + ଶݍ డమ

డమ
,ݕ,ݔ)ܷ ;ݐ 0) + ଷݍ డయ

డయ
,ݕ,ݔ)ܷ ;ݐ 0) + ⋯,   

= ,ݕ,ݔ)ݑ (ݐ  + ∑ ஶݑ
ୀଵ ݍ ,                                   (14) 

ݑ  = ଵ
!

డ(௫,௬,௧;)
డ

ݍ ݐܽ   , = 0,   

,ݕ,ݔ)ܸ (ݍ;ݐ = ,ݕ,ݔ)ܸ ;ݐ 0) + డ ݍ
డ௧
,ݕ,ݔ)ܸ ;ݐ (ݍ + ଶݍ డమ

డమ
,ݕ,ݔ)ܸ ;ݐ 0) + ଷݍ డయ

డయ
,ݕ,ݔ)ܸ ;ݐ 0) + ⋯,   

= ,ݕ,ݔ)ݒ (ݐ  + ∑ ஶݒ
ୀଵ ݍ ,                                   (15) 

ݒ  = ଵ
!

డ(௫,௬,௧;)
డ

ݍ ݐܽ   , = 0,   

,ݕ,ݔ)ܹ ;ݐ (ݍ = ,ݔ)ܹ ,ݕ ;ݐ 0) + డ ݍ
డ௧
,ݕ,ݔ)ܹ ;ݐ (ݍ + ଶݍ డమ

డమ
,ݕ,ݔ)ܹ ;ݐ 0) + ଷݍ డయ

డయ
,ݕ,ݔ)ܹ ;ݐ 0) + ⋯,   

= ,ݕ,ݔ)ݓ (ݐ  + ∑ ஶݓ
ୀଵ ݍ ,                                   (16) 

ݓ  = ଵ
!

డௐ(௫,௬,௧;)
డ

ݍ ݐܽ   , = 0,      

For ݍ = 1 eq (14), eq(15), eq(16) implies 

,ݕ,ݔ)ݑ (ݐ  = ,ݕ,ݔ)ݑ  (ݐ  +  ∑ ,ݕ,ݔ)ݑ ஶ,(ݐ
ୀଵ   

,ݕ,ݔ)ݒ (ݐ  = ,ݕ,ݔ)ݒ  (ݐ  +  ∑ ,ݕ,ݔ)ݒ ஶ,(ݐ
ୀଵ   

,ݕ,ݔ)ݓ (ݐ  = ,ݕ,ݔ)ݓ  (ݐ  + ∑ ,ݕ,ݔ)ݓ ஶ,(ݐ
ୀଵ   
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Differentiating eq(11), eq(12), eq(13) wrt embedding parameter q, setting ݍ = 0 and dividing by ݉! , the mth-order 

deformation is 

,ݕ,ݔ)ݑ]ଵܮ (ݐ − ߯ݑିଵ(ݕ,ݔ, [(ݐ = ℎ௨ ܴ(ݑିଵ),  

(ିଵݑ)ܴ  ݁ݎℎ݁ݓ =
1

(݉− 1)!
߲ିଵ

ଵܰ[ܷ(ݕ,ݔ, ,ݕ,ݔ)ܸ,(ݍ;ݐ ;ݐ (ݍ
ିଵݍ߲ . 

,ݕ,ݔ)ݒ]ଶܮ (ݐ − ߯ݒିଵ(ݔ, ,ݕ [(ݐ = ℎ௩  ܴ(ݑିଵ),  

(ିଵݒ)ܴ  ݁ݎℎ݁ݓ =
1

(݉ − 1)!
߲ିଵ

ଶܰ[ܸ(ݕ,ݔ, ,ݕ,ݔ)ܹ,(ݍ;ݐ ;ݐ (ݍ
ିଵݍ߲ . 

,ݕ,ݔ)ݓ]ଷܮ (ݐ − ߯ݓିଵ(ݕ,ݔ, [(ݐ = ℎ௪  ܴ(ݓିଵ),  

(ିଵݓ)ܴ  ݁ݎℎ݁ݓ =
1

(݉− 1)!
߲ିଵ

ଷܰ[ܹ(ݕ,ݔ, ,ݕ,ݔ)ܷ,(ݍ;ݐ ;ݐ (ݍ
ିଵݍ߲ . 

 

߯ = ቄ0 ݉ ≤ 1,
1 ݉ < 1.  

By taking ݑ(ݕ,ݔ, (ݐ = ݁௫ା௬ , ,ݔ)ݒ  ,ݕ (ݐ = ݁௫ି௬ ,ݕ,ݔ)ݓ    ,  (ݐ = ݁ି௫ା௬  and using the mth-order deformación. We 

have 

,ݕ,ݔ)ଵݑ (ݐ = −݁௫ା௬ݐ , 

,ݕ,ݔ)ଵݒ (ݐ = ݁௫ି௬ݐ , 

,ݕ,ݔ)ଵݓ (ݐ = ݁ି௫ା௬ݐ , 

,ݕ,ݔ)ଶݑ (ݐ = ݁௫ା௬
ଶݐ

2!
 , 

,ݔ)ଶݒ ,ݕ (ݐ = ݁௫ି௬
ଶݐ

2!
 , 

,ݕ,ݔ)ଶݓ (ݐ = ݁ି௫ା௬
ଶݐ

2!
 , 

,ݕ,ݔ)ଷݑ (ݐ = −݁௫ା௬
ଷݐ

3!
 , 

,ݔ)ଷݒ ,ݕ (ݐ = ݁௫ି௬
ଷݐ

3!
 , 
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,ݕ,ݔ)ଷݓ (ݐ = ݁ି௫ା௬
ଷݐ

3!
 , 

. 

. 

..  

The series solution is given by  

,ݕ,ݔ)ݑ (ݐ = ,ݕ,ݔ)ݑ  (ݐ ,ݕ,ݔ)ଵݑ + (ݐ ,ݔ)ଶݑ + ,ݕ (ݐ + ⋯,  

,ݕ,ݔ)ݒ (ݐ = ,ݕ,ݔ)ݒ  (ݐ ,ݕ,ݔ)ଵݒ + (ݐ ,ݕ,ݔ)ଶݒ + (ݐ + ⋯, 

,ݕ,ݔ)ݓ (ݐ = ,ݕ,ݔ)ݓ  (ݐ ,ݕ,ݔ)ଵݓ + (ݐ + ,ݕ,ݔ)ଶݓ  (ݐ + ⋯, 

,ݕ,ݔ)ݑ (ݐ =  ݁௫ା௬ ቂ1 − ݐ  + ௧మ

ଶ!
− ௧య

ଷ!
 + ௧ర

ସ!
− ௧ఱ

ହ!
−⋯ቃ,  

,ݕ,ݔ)ݒ (ݐ =  ݁௫ି௬ ቂ1 + ݐ  + ௧మ

ଶ!
+ ௧య

ଷ!
 + ௧ర

ସ!
+ ௧ఱ

ହ!
−⋯ቃ,  

,ݕ,ݔ)ݓ (ݐ =  ݁ି௫ା௬ ቂ1 + ݐ  + ௧మ

ଶ!
+ ௧య

ଷ!
 + ௧ర

ସ!
+ ௧ఱ

ହ!
−⋯ቃ,  

,ݕ,ݔ)ݑ (ݐ =  ݁௫ା௬ି௧ ,  

,ݕ,ݔ)ݒ (ݐ =  ݁௫ି௬ା௧ ,  

,ݕ,ݔ)ݓ (ݐ =  ݁ି௫ା௬ା௧ . 
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Example 2:  consider the following system of nonlinear partial differential equations, 

௧ݑ − ௬ݓ௫ݒ = 1, 

௧ݒ − ௬ݑ௫ݓ = 5, 

௧ݓ − ௬ݒ௫ݑ = 5, 

subject to the initial ondition 

,ݕ,ݔ)ݑ 0) = ݔ +    ,ݕ2

,ݕ,ݔ)ݒ 0) = ݔ −  ,ݕ2

,ݕ,ݔ)ݓ 0) = ݔ− +  ,ݕ2

To solve the above system of equations  by HAM, the linear operator is defined as 
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,ݕ,ݔ)ܷ]ଵܮ [(ݍ;ݐ =
߲
ݐ߲

,ݕ,ݔ)ܷ] ;ݐ ଵିଵܮ                         ,[(ݍ = න(. ݐ݀(
௧



, 

,ݕ,ݔ)ܸ]ଶܮ ;ݐ [(ݍ =
߲
ݐ߲

,ݕ,ݔ)ܸ] ;ݐ ଶିଵܮ                         ,[(ݍ = න(. ݐ݀(
௧



, 

,ݕ,ݔ)ܹ]ଷܮ ;ݐ [(ݍ =
߲
ݐ߲

,ݕ,ݔ)ܹ] ;ݐ ଷିଵܮ                         ,[(ݍ = න(. ݐ݀(
௧



, 

With the property 

ଵ[ܿ]ܮ = ଶ[ܿଵ]ܮ      ,0 = ଷ[ܿଶ]ܮ       ,0 = 0,  where ܿ, ܿଵ , ܿଶ are integral constants 

and the non-linear operator is defined as,  

ଵܰ[ܷ(ݕ,ݔ, ;ݐ [(ݍ =
߲
ݐ߲
,ݕ,ݔ)ܷ ;ݐ (ݍ −

߲
ݔ߲

,ݕ,ݔ)ܸ ;ݐ (ݍ
߲
ݕ߲

,ݕ,ݔ)ܹ (ݍ;ݐ − 1, 

ଶܰ[ܸ(ݕ,ݔ, [(ݍ;ݐ =
߲
ݐ߲
,ݕ,ݔ)ܸ ;ݐ (ݍ −

߲
ݔ߲

,ݕ,ݔ)ܹ ;ݐ (ݍ
߲
ݕ߲

,ݕ,ݔ)ܷ ;ݐ (ݍ − 5, 

ଷܰ[ܹ(ݕ,ݔ, ;ݐ [(ݍ =
߲
ݐ߲
,ݕ,ݔ)ܹ (ݍ;ݐ −

߲
ݔ߲

,ݕ,ݔ)ܷ ;ݐ (ݍ
߲
ݕ߲

,ݕ,ݔ)ܸ (ݍ;ݐ − 5, 

The zeroth order deformation is, 

(1 − ,ݕ,ݔ)ଵൣܷܮ(ݍ ;ݐ ,ݔ)ݑ—(ݍ ,ݕ ൧(ݐ = ℎ௨ݍ ଵܰ [ܷ(ݕ,ݔ, ;ݐ ,ݕ,ݔ)ܸ,(ݍ ;ݐ ,ݕ,ݔ)ܹ,(ݍ ;ݐ (17)                                              ,[(ݍ

  

(1 − ,ݕ,ݔ)ܸ]ଶܮ(ݍ —(ݍ;ݐ ,ݕ,ݔ)ݒ [(ݐ = ℎ௩ݍ ଶܰ [ܸ(ݕ,ݔ, ,ݕ,ݔ)ܹ,(ݍ;ݐ ;ݐ ,ݕ,ݔ)ܷ,(ݍ ;ݐ  (18)                                          ,[(ݍ

(1 − ,ݕ,ݔ)ܹ]ଷܮ(ݍ ,ݕ,ݔ)ݓ—(ݍ;ݐ [(ݐ = ℎ௪ݍ ଶܰ[ܹ(ݕ,ݔ, ;ݐ ,ݕ,ݔ)ܷ,(ݍ ;ݐ ,ݕ,ݔ)ܸ,(ݍ ;ݐ  (19)                                           ,[(ݍ

where ݍ ∈ [ 0 , 1 ] is an ebeding parameter,ℎ௨,ℎ௩ ,ℎ௪  ≠ 0 are  non-zero auxiliary parameters; 

,ݕ,ݔ)ݑ ,(ݐ ,ݕ,ݔ)ݒ ,ݕ,ݔ)ݓ,(ݐ  .are initial guess (ݐ

for ݍ =  0       ܷ(x, y, t; 0) = ,(xݑ  y, t),   ܸ(x, y, t; 0) = ,(xݒ  y, t),   ܹ(x, y, t; 0) = ,(xݓ  y, t),  

= ݍ        1       ܷ(x, y, t; 1) = ,x)ݑ  y, t),     ܸ(x, y, t; 1) = ,x)ݒ  y, t),     ܹ(x, y, t; 1) = ,x)ݓ  y, t),  
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thus as ݍ  increses from 0 to 1 the solution ܷ(ݕ,ݔ, ;ݐ ,ݕ,ݔ)ܸ,(ݍ ,ݕ,ݔ)ܹ,(ݍ;ݐ ;ݐ (ݍ  varies from the initial guess 

,ݕ,ݔ)ݑ ,(ݐ ,ݕ,ݔ)ݒ ,ݕ,ݔ)ݓ,(ݐ ,ݕ,ݔ)ݑ to the solution (ݐ ,(ݐ ,ݕ,ݔ)ݒ ,ݕ,ݔ)ݓ,(ݐ  By Taylor series expansion, we have .(ݐ

,ݕ,ݔ)ܷ ;ݐ (ݍ = ,ݕ,ݔ)ܷ ;ݐ 0) + డ ݍ
డ௧
,ݕ,ݔ)ܷ ;ݐ (ݍ + ଶݍ డమ

డమ
,ݕ,ݔ)ܷ ;ݐ 0) + ଷݍ డయ

డయ
,ݕ,ݔ)ܷ ;ݐ 0) + ⋯,   

= ,ݕ,ݔ)ݑ (ݐ  + ∑ ஶݑ
ୀଵ ݍ ,                                   (20) 

ݑ  = ଵ
!

డ(௫,௬,௧;)
డ

ݍ ݐܽ   , = 0,   

,ݕ,ݔ)ܸ (ݍ;ݐ = ,ݕ,ݔ)ܸ ;ݐ 0) + డ ݍ
డ௧
,ݕ,ݔ)ܸ ;ݐ (ݍ + ଶݍ డమ

డమ
,ݕ,ݔ)ܸ ;ݐ 0) + ଷݍ డయ

డయ
,ݕ,ݔ)ܸ ;ݐ 0) + ⋯,   

= ,ݕ,ݔ)ݒ (ݐ  + ∑ ஶݒ
ୀଵ ݍ ,                                   (21) 

ݒ  = ଵ
!

డ(௫,௬,௧;)
డ

ݍ ݐܽ   , = 0,   

,ݕ,ݔ)ܹ ;ݐ (ݍ = ,ݔ)ܹ ,ݕ ;ݐ 0) + డ ݍ
డ௧
,ݕ,ݔ)ܹ ;ݐ (ݍ + ଶݍ డమ

డమ
,ݕ,ݔ)ܹ ;ݐ 0) + ଷݍ డయ

డయ
,ݕ,ݔ)ܹ ;ݐ 0) + ⋯,   

= ,ݕ,ݔ)ݓ (ݐ  + ∑ ஶݓ
ୀଵ ݍ ,                                   (22) 

ݓ  = ଵ
!

డௐ(௫,௬,௧;)
డ

ݍ ݐܽ   , = 0,      

For ݍ = 1 eq (5), eq(6), eq(7) implies, 

,ݕ,ݔ)ݑ (ݐ  = ,ݕ,ݔ)ݑ  (ݐ  +  ∑ ,ݕ,ݔ)ݑ ஶ,(ݐ
ୀଵ   

,ݕ,ݔ)ݒ (ݐ  = ,ݕ,ݔ)ݒ  (ݐ  +  ∑ ,ݕ,ݔ)ݒ ஶ,(ݐ
ୀଵ   

,ݕ,ݔ)ݓ (ݐ  = ,ݕ,ݔ)ݓ  (ݐ  + ∑ ,ݕ,ݔ)ݓ ஶ,(ݐ
ୀଵ   

Differentiating eq(17),eq(18),eq(19) wrt embedding parameter q, setting ݍ = 0 and dividing by ݉! , the mth-order 

deformation is 

,ݕ,ݔ)ݑ]ଵܮ (ݐ − ߯ݑିଵ(ݕ,ݔ, [(ݐ = ℎ௨ ܴ(ݑିଵ),  

(ିଵݑ)ܴ  ݁ݎℎ݁ݓ =
1

(݉− 1)!
߲ିଵ

ଵܰ[ܷ(ݕ,ݔ, ,ݕ,ݔ)ܸ,(ݍ;ݐ ;ݐ ,ݕ,ݔ)ܹ,(ݍ ;ݐ (ݍ
ିଵݍ߲ . 

,ݕ,ݔ)ݒ]ଶܮ (ݐ − ߯ݒିଵ(ݔ, ,ݕ [(ݐ = ℎ௩  ܴ(ݑିଵ),  
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(ିଵݒ)ܴ  ݁ݎℎ݁ݓ =
1

(݉ − 1)!
߲ିଵ

ଶܰ[ܸ(ݕ,ݔ, ,ݕ,ݔ)ܹ,(ݍ;ݐ ;ݐ ,ݕ,ݔ)ܷ,(ݍ ;ݐ (ݍ
ିଵݍ߲ . 

,ݕ,ݔ)ݓ]ଷܮ (ݐ − ߯ݓିଵ(ݕ,ݔ, [(ݐ = ℎ௪  ܴ(ݓିଵ),  

(ିଵݓ)ܴ  ݁ݎℎ݁ݓ =
1

(݉− 1)!
߲ିଵ

ଷܰ[ܹ(ݕ,ݔ, ,ݕ,ݔ)ܷ,(ݍ;ݐ ;ݐ ,ݕ,ݔ)ܸ,(ݍ ;ݐ (ݍ
ିଵݍ߲ . 

 

߯ = ቄ0 ݉ ≤ 1,
1 ݉ < 1.  

By taking ݑ(ݕ,ݔ, (ݐ = ݔ + ,ݕ2 ,ݕ,ݔ)ݒ  (ݐ = ݔ − ,ݕ,ݔ)ݓ    , ݕ2 (ݐ = ݔ− + ݕ2  and using the mth-order 

deformation,we have 

,ݕ,ݔ)ଵݑ (ݐ =  , ݐ3

,ݕ,ݔ)ଵݒ (ݐ =  , ݐ3

,ݕ,ݔ)ଵݓ (ݐ =  , ݐ3

,ݕ,ݔ)ݑ (ݐ = 0 , ݇ ݎ݂ ≥ 2 

,ݕ,ݔ)ݒ (ݐ = 0 , ݇ ݎ݂ ≥ 2 

,ݕ,ݔ)ݓ (ݐ = 0 , ݇ ݎ݂ ≥ 

. 

. 

..  

The series solution is given by  

,ݕ,ݔ)ݑ (ݐ = ,ݕ,ݔ)ݑ  (ݐ ,ݕ,ݔ)ଵݑ + (ݐ ,ݔ)ଶݑ + ,ݕ (ݐ + ⋯,  

,ݕ,ݔ)ݒ (ݐ = ,ݕ,ݔ)ݒ  (ݐ ,ݕ,ݔ)ଵݒ + (ݐ ,ݕ,ݔ)ଶݒ + (ݐ + ⋯, 

,ݕ,ݔ)ݓ (ݐ = ,ݕ,ݔ)ݓ  (ݐ ,ݕ,ݔ)ଵݓ + (ݐ + ,ݕ,ݔ)ଶݓ  (ݐ + ⋯, 

,ݕ,ݔ)ݑ (ݐ = ݔ + ݕ2 +   ,ݐ3
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,ݕ,ݔ)ݒ (ݐ = ݔ  − ݕ2 +   ,ݐ3

,ݕ,ݔ)ݓ (ݐ = ݔ−  + ݕ2 +   ,ݐ3
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3. Conclusions  
Homotopy Analysis Method (HAM) is implemented to obtain analytical solutions of non-linear system of partial 

differential equations. Comparison of the obtained results HAM with exact solution shows that the method is reliable 

and capable of providing analytic treatment for solving such equations. Numerical results and graphical representations 

clearly reflect complete compatibility of the proposed algorithm and discussed problems.  
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