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Abstract

It is shown that the modulation spaces Mw
p can be characterized by the approximation behavior of their elements using Local Fourier bases.

In analogy to the Local Fourier bases, we show that the modulation spaces can also be characterized by the approximation behavior of
their elements using Gabor frames. We derive direct and inverse approximation theorems that describe the best approximation by linear
combinations of N terms of a given function using its modulates and translates.
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1. Introduction

One of the central problems of approximation theory is to characterize the set of functions which have a
prescribed order of approximation by a given method of approximation, e.g., to characterize the functions
which have approximation order O(N−α) for some fixed α > 0. Results of this type are known and easy
to prove when the space to work in is a Hilbert space and the set where the approximation is seeking is an
orthonormal system.
For general systems, there are sufficient conditions on a given function in the space which guarantees
certain rate of decrease for the error of approximation. In this paper we consider the method of nonlinear
approximation in particular spaces called the modulation spaces. We investigate the approximation of
smooth functions by time-frequency shifts. The method of nonlinear approximation has recently found
many computational applications such as data compression, statistical estimation or adaptive schemes for
partial differential or integral equations.
Nonlinear approximation is utilized in many numerical algoritheorems, it occurs in several applications.
In mathematics and applications it is very important to write a function in some function space in the form

f = ∑
k∈Λ

λkgk

where Λ is an indexed set and {gk : k ∈ Λ} is a set of functions. The case in which this set is obtained
from a single function is very interesting. One way to construct such set is by using the Gabor frames.
Here we characterize functions with a given degree of nonlinear approximation by linear combination of
N terms of a given function f belonging to some specific space using its modulates and translates.
Let X be a Banach space, where the approximation takes place, with norm
∥.∥= ∥.∥X . Then we say that a subset D of functions from X is a dictionary if :
f or all g ∈ D , ∥g∥X = 1, and g ∈ D implies −g ∈ D (1.1)
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Let ΣN(D) be the set in which the approximation is seeked, which denotes the collection of all functions
in X which can be written as a linear combination of at most N elements of D , i.e.,

ΣN(D) = {s ∈ X ; s = ∑
k∈F

ckgk , gk ∈ D , ck ∈ C, card(F)≤ N} (1.2)

From this definition we note that the sum of two elements from ΣN is generally not in ΣN , and needs 2N
terms in its representation by the gk’s, so it is rather to be in the larger set Σ2N , which means that the space
ΣN is not linear, for this reason best N-term approximation is often called nonlinear approximation.
For any given f ∈ X , the error associated to the best N-term approximation to f from D is given by:

σN( f ,D)X := σN( f )X = inf
s∈ΣN

∥ f − s∥X (1.3)

The method of nonlinear approximation was first used by Stechkin; he characterized the space of all
f ∈ L2(R) which have absolutely convergent orthogonal expansion, see [1]. More precisely, he proved
the following theorem:
Theorem 1.1. ([2]). Let {φk; k ∈ N} be an orthonormal basis for L2(R). Then for f ∈ L2(R) we have:

∑
k∈N

|⟨ f ,φk⟩|< ∞ ⇐⇒
∞

∑
N=1

(N
1
2 σN( f ))

1
N

< ∞

Moreover, if the orthonormal basis is the trigonometric basis {e2πikx; k ∈ Z}, and if T denotes the torus
(like the interval [0,π] ), then we have the following result.

Corollary 1.2. ([2]). Let A (T ) be the space of all f ∈ L2(T ) which have an absolutely convergent
Fourier Series. Then for f ∈ L2(T )

f ∈ A (T ) ⇐⇒
∞

∑
N=1

(N
1
2 σN( f ))

1
N

< ∞

For a general discussion of the characterization problem, DeVore and Temlyakove made a modification
of Stechkin’s result to characterize other approximation spaces: For a general dictionary D , and for any
p > 0 define

Ao
p(D ,M) = { f ∈ H ; f = ∑

k∈Λ

ckwk,wk ∈ D , |Λ|< ∞ and

(
∑
k∈Λ

|ck|p
) 1

p

≤ M}

and we define Ap(D ,M) as the closure (in H ) of Ao
p(D ,M). Furthermore, define

Ap(D) =
⋃

M>0

Ap(D ,M)

and for f ∈ Ap(D) the semi-norm | f |Ap(D) is the smallest M such that f ∈ Ap(D ,M).
Let D be given by an orthonormal basis {φk; k ∈ Z}. Then f ∈ Ap(D) if and only if ∑k |⟨ f ,φk⟩|p < ∞ and

| f |Ap(D) =

(
∑
k∈Z

|⟨ f ,φk⟩|p
)1/p

.

It means that we can characterize certain approximation orders by the spaces Ap. So, Stechkin’s result in
Theorem (1.1) can be formulated as follows:

f ∈ A1(D) i f and only i f
∞

∑
N=1

(N1/2
σN( f ,D))

1
N

< ∞.

A slight modification of Stechkin’s result due to DeVore and Temlyakov is given in the following theorem.

Theorem 1.3. ([2]). If D is given by an orthonormal basis for H , for α > 0 and p = (α + 1
2)

−1, we
have :

f ∈ Ap(D) ⇐⇒
∞

∑
N=1

(Nα
σN( f ))p 1

N
< ∞. (1.4)
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This theorem provides a characterization of functions with an approximate order like O(N−α), for
α = 1

p −
1
2 , using an orthonormal basis, and as a special case, setting p = 1 we get Stechkin’s result.

We are now interested in characterization the approximation space Ap(D) in the whole range of the
parameters α, p and a given dictionary D .

2. Gabor Frames and Modulation Spaces

In this section we will collects the necessary background on the Gabor frames and modulation spaces.
The modulation spaces occur in the study of the concentration of a function in the time-frequency plane.
They were introduced in 1983 by H. Feichtinger [3] and were subsequently investigated in [4, 5]. These
spaces are defined by the decay properties of the short time Fourier transform, and contain many classical
function spaces.
In addition to the basic definitions and notations of [6], the Schwartz class and the space of tempered
distributions on R are denoted by S (R) and S ′(R) respectively. The translation and modulation of a
function f with domain R are defined, respectively, by:

Tx f (t) = f (t − x) and Mw f (t) = e2πiwt f (t) (2.1)

for x,w ∈ R, where Tx is a translation by x or time-shift, and Mw is a modulation by w or frequency-shift.
The Short-Time Fourier transform (STFT) of a function f ∈ L2(R) with respect to a function g ∈ L2(R)
called the window function, is defined as:

Vg f (x,w) =
∫
R

f (t)ḡ(t − x)e−2πiwtdt = ⟨ f ,MwTxg⟩. (2.2)

For any continuous strictly positive function m on R, the weighted Lp space Lm
p (R) is defined by the norm

∥ f∥Lm
p = ∥ f m∥Lp

and the mixed-norm spaces Lm
p,q(R2) consists of all (Lebesgue) measurable functions on R2, such that for

a weight function m on R2 the norm

∥F∥Lm
p,q =

(∫
R

(∫
R
|F(x,w)|p m(x,w)pdx

)q/p

dw

)1/q

(2.3)

is finite. Throughout this paper, we will use two types of weights:
A submultiplicative weight function v on R2 which is a positive, symmetric and continuous function and
satisfies

v(z1 + z2)≤ v(z1)v(z2), f or all z1,z2 ∈ R2. (2.4)

An v-moderate weight function m on R2 which is a positive, symmetric and continuous function and
satisfies

m(z1 + z2)≤Cv(z1)m(z2), f or all z1,z2 ∈ R2. (2.5)

Given a non-zero window function g ∈ L2(R) and constants α,β > 0, the set of time-frequency shifts

G (g,α,β ) = {TαkMβng ; k,n ∈ Z} (2.6)

is called a Gabor frame for L2(R) if there exists constants A,B > 0 (called frame bounds) such that for all
f ∈ L2(R)

A∥ f∥2
L2

≤ ∑
k,n∈Z

|⟨ f ,TαkMβng⟩|2 ≤ B∥ f∥2
L2

(2.7)

Proposition 2.1. ([6]). If G (g,α,β ) is frame for L2(R), then there exists a dual window γ ∈ L2(R), such
that the dual frame of G (g,α,β ) is G (γ,α,β ). Consequently, every f ∈ L2(R) possesses the expansion:

f = ∑ ∑
k,n∈Z

⟨ f ,TαkMβng⟩TαkMβnγ (2.8)

= ∑ ∑
k,n∈Z

⟨ f ,TαkMβnγ⟩TαkMβng. (2.9)
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with unconditional convergence in L2(R). Further, the following norm equivalences hold:

A∥ f∥2
2 ≤ ∑ ∑

k,n∈Z
|Vg f (αk,βn)|2 ≤ B∥ f∥2

2. (2.10)

and
B−1∥ f∥2

2 ≤ ∑ ∑
k,n∈Z

|⟨ f ,TαkMβnγ⟩|2 ≤ A−1∥ f∥2
2. (2.11)

for some constants A,B > 0.
Under stronger assumptions on the function g, the expansion in equations (2.8) and (2.9) are valid not
only in L2 but in the entire class of function spaces, namely, the modulation spaces.

Definition 2.2. ([6]). Fix a non-zero window g ∈ S (R), a v-moderate weight function m on R2, and
1 ≤ p,q ≤ ∞. Then the modulation space Mm

p,q(R) consists of all tempered distributions f ∈ S ′(R) such
that

∥ f∥Mm
p,q = ∥Vg f∥Lm

p,q =

(∫
R

(∫
R
|Vg f (x,w)|p m(x,w)pdx

)q/p

dw

)1/q

(2.12)

is finite.
Thus, Mm

p,q is a Banach space of tempered distributions. If p = q, then we write Mm
p instead of Mm

p,p, and if
m(z)≡ 1 on R2, then we write Mp,q and Mp for M1

p,q and M1
p, respectively. Some examples of modulation

spaces are the following:
1. The Segal algebra S0(R) = M1,1(R).
2. L2(R) = M2,2(R). However, Lp does not coincide with any modulation space when p ̸= 2 [7].
3. The Bessel potential space:

Hs(R) = { f ∈ S ′;∥ f∥Hs =
(∫

R | f̂ (w)|2 (1+ |w|2)2sdw
)1/2

< ∞}.
Theorem 2.3. ([6]). Let m be a v-moderate weight. Then

1. Mm
p,q(R) is a Banach space for 1 ≤ p,q ≤ ∞.

2. Mm
p,q is invariant under time-frequency shifts, and ∥TxMw f∥Mm

p,q ≤Cv(x,w)∥ f∥Mm
p,q .

3. If 1 ≤ p1, p2,q1,q2 ≤ ∞ and m2 ≤Cm1, then
Mm1

p1,q1
⊆ Mm2

p2,q2
, whenever p1 ≤ p2,q1 ≤ q2.

Moreover, there exists a constant C such that
∥ f∥Mm2

p2,q2
≤C∥ f∥Mm1

p1,q1
(2.13)

for all f ∈ Mm1
p1,q1 .

The appropriate window class in this setting is the Feichtinger algebra

Mv
1 = { f ∈ S ′(R) : V f f ∈ Lv

1(R
2)}.

where v is a submultiplicative weight on R2 with polynomial growth.
Theorem 2.4. ([6]). Suppose 1 ≤ p,q ≤ ∞, m is a v-moderate, g,γ ∈ Mv

1. Suppose that {MβnTαkg, k,n ∈
Z} generates a frame for L2(R), then for all f ∈ Mm

p,q we have

f = ∑
n∈Z

∑
k∈Z

⟨ f ,MβnTαkg⟩MβnTαkγ (2.14)

= ∑
n∈Z

∑
k∈Z

⟨ f ,MβnTαkγ⟩MβnTαkg (2.15)

with unconditional convergence in Mm
p,q if p,q < ∞, and weak-star convergence in M1/v

∞ otherwise.
Furthermore, there are constants A,B > 0 such that for all f ∈ Mm

p,q

A∥ f∥Mm
p,q ≤

∑
n∈Z

(
∑
k∈Z

|⟨ f ,MβnTαkg⟩|p m(αk,βn)p

)q/p
1/q

≤ B∥ f∥Mm
p,q (2.16)
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And the norm equivalence:

A′∥ f∥Mm
p,q ≤

∑
n

(
∑
k
|⟨ f ,MβnTαkγ⟩|p m(αk,βn)p

)q/p
1/q

≤ B′∥ f∥Mm
p,q (2.17)

holds on Mm
p,q.

3. Characterization of Modulation Spaces Mp

According to the definition of the approximation spaces Ap(D), several questions arise:

1. If D is given by the Fourier basis, what is the space that can be characterized by this basis ?.
2. If D is given by a Local Fourier basis, what are the spaces that can be characterized by this basis ?.
3. If D is given by Gabor frame, what are the spaces that can be characterized by this basis ?.

The first question was answered by Stechkin in Theorem (1.1). For the second question we have the K.
Gröchenig and S. Samarah result [8].

Theorem 3.1. ([8]). If 0 < p < q ≤ ∞ and α = 1
p −

1
q , then:

f ∈ Mw
p i f and only i f

∞

∑
N=1

(
Nα

σN( f )Mw
q

)p 1
N

< ∞ (3.1)

In the proof of Theorem (3.1) the basis property was used in an essential way to rewrite the approximation
error in terms of a sequence space norm. For linearly dependent sets it is not clear how much of Theorem
(3.1) still holds. The next theorem prove the one-half of Theorem (3.1) under the weaker assumption that
the set {TβmMγnφ : m,n ∈ Z} is a Banach frame for Mw

p .

Proposition 3.2. ([9]). Let {TβmMγnφ : m,n ∈ Z} be a Banach frame for Mω
p for all 0 < p < ∞. If

0 < p < q, α = 1
p −

1
q and f ∈ Mω

p , then

∞

∑
N=1

(
Nα

σN( f )Mω
q

)p 1
N

< ∞ (3.2)

Proposition (3.2) does not give a complete characterization of the modulation spaces Mp using the Gabor
atoms as a dictionary. It proves only that for a function f in a modulation space Mp, the approximation
error has order N−α , but does not give the other implication, i.e., if the approximation error for some
function has order N−α for some α > 0, what does this tell us about the space to which f belongs. This
inquiry will be answered in our next work which will based on the classical inequalities of Jackson and
Bernstein where we applied with the Gabor atoms in the modulation spaces.
Let X be a Banach space in which approximation takes place and assume that we can find a number r > 0
and a second space Y continuously embedded in X , and Xn be the subsets of X in which approximants
come from. Then
Jackson Inequality: σn( f )X ≤C n−r | f |Y , for all f ∈ Y , n = 1,2, .....
Bernstein Inequality: |s|Y ≤C′ nr ∥s∥X , for all s ∈ Xn, n = 1,2, .....

Our claim now is: Assuming that the modulation space M∞ is the space in which approximation takes
place, and using ΣN as the subset of X in which the approximants are seeked. Then Bernstein inequality
holds for our working space. Before proving our new result let we define ΣN using Gabor frames as
follows:

ΣN(D) = {s ∈ M∞; s = ∑
(k,n)∈F

cknTαkMβng, ckn ∈ C, card(F)≤ N} (3.3)

Proposition 3.3. Let 1 ≤ p ≤ q < ∞, α > 0 and g ∈ M1, let D := {TαkMβng; k,n ∈ Z} be a dictionary
given by a Gabor frame for L2(R), and for α = ( 1

p −
1
q)+1. Then we have:

I f s ∈ ΣN(D), then ∥s∥Mp ≤C Nα ∥s∥Mq ∀N = 1,2, .... (3.4)

for some positive constant C :=C(α,β ,g).
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Proof. Let s ∈ ΣN which has a Gabor expansion:

s = ∑
(k,n)∈F

cknTαkMβng, (3.5)

for some indexed set F with card(F)≤ N and some coefficients ckn, and for simplicity of notations we
let gkn = TαkMβng. Taking the Mp-norm for s and using formula (2.12) we have:

∥s∥p
Mp

= ∥Vgs∥p
Lp

≤
∫
R

∫
R

(
∑

(k,n)∈F

∣∣cknVggkn(x,y)
∣∣)p

dxdy

and applying the Hölder’s inequality for ∑(k,n)∈F
∣∣cknVggkn(x,y)

∣∣, for 1 ≤ p < ∞, and using the fact that
q′ ≤ p′ we get

∥s∥Mp ≤

(
∑

(k,n)∈F
|ckn|p

)1/p

.

(∫
R

∫
R

([
∑

(k,n)∈F

∣∣Vggkn(x,y)
∣∣q′]1/q′

)p

dxdy

)1/p

≤ N
1
p
(

sup
(k,n)∈F

|ckn|
)
.N

1
q′

(∫
R

∫
R

(
sup

(k,n)∈F

∣∣Vggkn(x,y)
∣∣)pdxdy

) 1
p

= N
1
p−

1
q+1.

(
sup

(k,n)∈F
|ckn|

)
.∥Vggk′n′∥Lp, f or some(k′,n′) ∈ F

≤ N
1
p−

1
q+1.

(
sup

(k,n)∈F
|ckn|

)
.C′ ∥g∥Mp

where we used part (2) of Theorem (2.3) in the last inequality. Now, since g ∈ M1 and 1 ≤ p < ∞, then
∥g∥Mp ≤ ∥g∥M1 which is finite. Moreover, Since s ∈ M∞, Theorem (2.4) implies that there exist constants
A, B > 0 (depends only on α,β and g) such that for p = q = ∞ we have

∥s∥Mp ≤C′.N
1
p−

1
q+1 (B.∥s∥M∞

) .∥g∥M1

Furthermore, we know that ∥s∥M∞
≤ ∥s∥Mq for 1 ≤ q < ∞, hence

∥s∥Mp ≤ CN
1
p−

1
q+1 ∥s∥Mq

for a constant C independent of s, which completes the proof.

Remark 3.4 ([10]). . By the monotonicity of the sequence (σN( f )Mq), we have the following equivalence
relation:(

∞

∑
N=1

[
Nα

σN( f )Mq

]λ 1
N

)1/λ

≍

(
∞

∑
N=0

[
(2N)α

σ2N ( f )Mq

]λ)1/λ

(3.6)

for each α > 0 and 0 < λ < ∞. Furthermore, this equivalence means that there exists finite constants
A1,A2 > 0, such that

A1

(
∞

∑
N=1

[
Nα

σN( f )Mq

]λ 1
N

)1/λ

≤

(
∞

∑
N=0

[
(2N)α

σ2N ( f )Mq

]λ)1/λ

≤ A2

(
∞

∑
N=1

[
Nα

σN( f )Mq

]λ 1
N

)1/λ
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Theorem 3.5. Let {TαkMβng; k,n ∈ Z} be a Gabor frame for L2(R), ΣN as defined in (3.3), 1 ≤ p ≤
q < ∞, and α = 1

p −
1
q +1. Then we have

i f
∞

∑
N=1

(
Nα

σN( f )Mq

)p 1
N

< ∞ then f ∈ Mp . (3.7)

Proof. Given a function f belongs to the modulation space M∞ and has a Gabor expansion

f = ∑
k,n∈Z

λknTαkMβng

for some window function g ∈ M1. Moreover, suppose that the approximation error of approximating f
by elements from ΣN is measured in an Mq-norm and satisfies(

∞

∑
N=1

[
Nα

σN( f )Mq

]p 1
N

)
< ∞, (3.8)

for any α > 0, and 1 ≤ p < ∞, we need to show that ∥ f∥Mp < ∞.
For all N ∈ N, let sN ∈ Σ2N be a near-best approximant to f from Σ2N , i.e.,

∥ f − sN∥Mq ≡ σ2N ( f )Mq (3.9)

Furthermore, we can assume that every f in M∞ can be written as

f = lim
k−→∞

k

∑
N=1

(sN − sN−1) =
∞

∑
N=1

(sN − sN−1)

where s0 = 0. Now, taking the Mp-norm for f we get

∥ f∥Mp ≤
∞

∑
N=1

∥sN − sN−1∥Mp (3.10)

Since Σ2N−1 ⊆ Σ2N . Then (sN − sN−1) ∈ Σ2N . So we can apply our result in Proposition (3.3) for
(sN − sN−1) as follows: There exist C > 0 such that

∥sN − sN−1∥Mp ≤C (2N)α ∥sN − sN−1∥Mq (3.11)

for the given α > 0.
Moreover, from assumption (3.9) and from the monotonicity of (σN( f )Mq), we have

∥sN − sN−1∥Mq ≤C′
σ2N−1( f )Mq , f or some constant C′ > 0. (3.12)

Back to Equation (3.10), using the previous inequality, we have,

∥ f∥Mp ≤C′
2

∞

∑
N=0

[
(2N)α

σ2N ( f )Mq

]
Using Remark 3.4 for λ = 1 and our assumption in (3.8) above we get

∥ f∥Mp ≤C′′
2

(
∞

∑
N=1

[
Nα

σN( f )Mq

] 1
N

)
< ∞

Thus, our proof is complete and we have ∥ f∥Mp < ∞, i.e., f ∈ Mp .
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4. Characterization of Modulation Spaces Mp,q

Now it is natural according to the later results that one thinking in the characterization of the modulation
spaces Mp,q using the Gabor frames and nonlinear approximation, and if it is possible to characterize an
arbitrary function f belonging to some modulation space like M∞ using elements from the same space,
knowing that its approximation error measured in the Mp,q-norm satisfying some condition.
Let D := {TαkMβng; k,n ∈ Z} be a dictionary given by a Gabor frame for L2(R), and define for all
N ∈ N:

ΣN(D) = {s ∈ M∞; s = ∑
(k,n)∈F

cknTαkMβng, ckn ∈ C, card(F)≤ N} (4.1)

σN( f )Mp,q = inf
s∈ΣN

∥ f − s∥Mp,q (4.2)

We can solve this problem in one direction. More precisely, for ΣN defined in Equation (4.1), we have
Theorem 4.1. Let {TαkMβng; k,n ∈ Z} be a Gabor frame for L2(R), ΣN as defined in Equation (4.1),
1 ≤ p1 ≤ p < ∞, 1 ≤ q1 ≤ q < ∞, and α = ( 1

p1
+ 1

q1
)− ( 1

p +
1
q)+2. Then, for some τ > 0, we have:

i f
∞

∑
N=1

(
Nα

σN( f )Mp,q

)τ 1
N

< ∞, then f ∈ Mp1,q1 (4.3)

Before starting the proof of the theorem, we must show that the Bernstein estimate theorem can be applied
to these modulation spaces under our new definition of ΣN and a given rate α > 0.
Proposition 4.2. (Bernstein Inequality and Modulation Spaces Mp,q).
Let 1 ≤ p1 ≤ p < ∞, 1 ≤ q1 ≤ q < ∞ and α > 0. Let g ∈ M1, and D := {TαkMβng; k,n ∈ Z} be a
dictionary given by a Gabor frame for L2(R). Then for α = ( 1

p1
+ 1

q1
)− ( 1

p +
1
q)+2, we have:

i f s ∈ ΣN(D) , then ∥s∥Mp1,q1
≤C Nα ∥s∥Mp,q, ∀N = 1,2, .... (4.4)

for some positive constant C :=C(α,β ,g).

Proof. Let s ∈ ΣN . Then

s = ∑
(k,n)∈F

cknTαkMβng = ∑
k

∑
n

cknTαkMβng (4.5)

for some indexed set F with card(F)≤ N and some coefficients ckn. For simplicity of notations we let
gkn = TαkMβng. Now, taking the Mp1,q1-norm for s and using formula (2.12) we get

∥s∥q1
Mp1,q1

= ∥Vgs∥q1
Lp1,q1

≤
∫
R

(∫
R

[
∑
k

∑
n

∣∣ckn
∣∣∣∣Vggkn(x,y)

∣∣]p1

dx

)q1/p1

dy

Now, keeping in mind that we are working over a finite indexed set F , using the Hölder’s inequality over
the internal index, and 1

p1
+ 1

p′1
= 1, we have for each x,y

∑
k

(
∑
n

∣∣ckn
∣∣∣∣Vggkn(x,y)

∣∣)≤ ∑
k

((
∑
n

∣∣ckn
∣∣p1
) 1

p1 .
(
∑
n

∣∣Vggkn(x,y)
∣∣p′1) 1

p′1

)
Again, using the Hölder’s inequality over the external index, and 1

q1
+ 1

q′1
= 1, the right hand side of the

last inequality will be less than or equal to(
∑
k

[
∑
n

∣∣ckn
∣∣p1

] q1
p1

) 1
q1

.

∑
k

[
∑
n

∣∣Vggkn(x,y)
∣∣p′1] q′1

p′1


1

q′1

(4.6)



Bernstein and Bernstein-Like Inequalities for Modulation Spaces 9

Now, simplifying the first part of the expression in (4.6), we get(
∑
k

[
∑
n

∣∣ckn
∣∣p1

] q1
p1

) 1
q1

≤ N
1
p1
+ 1

q1 .
(

sup
(k,n)∈F

∣∣ckn
∣∣)

But since p1 ≤ p, then p′ ≤ p′1, so[
∑
n

∣∣Vggkn(x,y)
∣∣p′1]1/p′1 ≤

[
∑
n

∣∣Vggkn(x,y)
∣∣p′]1/p′

and we get ∑
k

[
∑
n

∣∣Vggkn(x,y)
∣∣p′1] q′1

p′1


1

q′1

≤

(
∑
k

[
N

1
p′ sup

n

∣∣Vggkn(x,y)
∣∣]q′1

) 1
q′1

≤ N
1
p′

(
∑
k

∣∣Vggkn′(x,y)
∣∣q′1) 1

q′1

Since q1 ≤ q, we must have q′ ≤ q′1. Hence we get(
∑
k

∣∣Vggkn′(x,y)
∣∣q′1)1/q′1

≤

(
∑
k

∣∣Vggkn′(x,y)
∣∣q′)1/q′

= N
1
q′
∣∣Vggk′n′(x,y)

∣∣
Therefore∑

k

[
∑
n

∣∣Vggkn(x,y)
∣∣p′1] q′1

p′1


1

q′1

≤ N2−( 1
p+

1
q )
∣∣Vggk′n′(x,y)

∣∣
Combining our results we get

∥s∥Mp1,q1
≤

∫
R

(∫
R

[
∑
k

∑
n

∣∣ckn
∣∣∣∣Vggkn(x,y)

∣∣]p1

dx

)q1/p1

dy

 1
q1

∑
k

[
∑
n

∣∣Vggkn(x,y)
∣∣p′1] q′1

p′1


1

q′1 ]p1
dx

)q1/p1

dy
) 1

q1

≤ N( 1
p1
+ 1

q1
)−( 1

p+
1
q )+2

. sup
(k,n)∈F

∣∣ckn
∣∣.(∫

R

(∫
R

∣∣Vggk′n′(x,y)
∣∣p1dx

)q1/p1

dy

)1/q1

Using Equation (2.12) and Theorem (2.4) for p,q < ∞ we have

∥s∥Mp1,q1
≤ N( 1

p1
+ 1

q1
)−( 1

p+
1
q )+2

.∥s∥M∞
.∥Vggk′n′∥Lp1,q1

≤ C N( 1
p1
+ 1

q1
)−( 1

p+
1
q )+2

.∥s∥Mp,q .∥gk′n′∥Mp1,q1

for some positive constant C :=C(α,β ,g). Moreover, using part (2) of Theorem (2.3) and our assumption
that g ∈ M1 and 1 ≤ p1,q1 < ∞ we get our result.
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Proof of Theorem (4.1).
Given a function f belongs to the modulation space M∞ and has a Gabor expansion

f = ∑
k,n∈Z

λknTαkMβng

for some window function g ∈ M1. Suppose that the approximation error of approximating f by elements
from ΣN is measured in an Mp,q-norm and satisfies(

∞

∑
N=1

[
Nα

σN( f )Mp,q

]τ 1
N

)
< ∞, f or some τ > 0 (4.7)

we need to show that ∥ f∥Mp1,q1
< ∞.

Let sN ∈ Σ2N be a near-best approximant to f from Σ2N , for all N ∈ N, i.e.,

∥ f − sN∥Mp,q ≡ σ2N ( f )Mp,q (4.8)

Since every f in M∞ can be written as

f =
∞

∑
N=1

(sN − sN−1)

where s0 = 0. Taking the Mp1,q1-norm for f we get

∥ f∥Mp1,q1
≤

∞

∑
N=1

∥sN − sN−1∥Mp1,q1
(4.9)

Since (sN − sN−1) ∈ Σ2N . So, from Proposition (4.2), there exist C > 0 such that

∥sN − sN−1∥Mp1,q1
≤C (2N)α ∥sN − sN−1∥Mp,q (4.10)

for the given α . Moreover, from assumption (4.8) and from the monotonicity of (σN( f )Mp,q), we have

∥sN − sN−1∥Mp,q ≤C′
σ2N−1( f )Mp,q, f or some constant C′ > 0. (4.11)

Back to Equation (4.9), and using the previous inequality we have,

∥ f∥Mp1,q1
≤C′

2

∞

∑
N=0

[
(2N)α

σ2N ( f )Mp,q

]
and using Remark 3.4 for λ = 1 and our assumption in (4.7) above we get

∥ f∥Mp1,q1
≤C′′

2

(
∞

∑
N=1

[
Nα

σN( f )Mp,q

] 1
N

)
< ∞

thus, we have ∥ f∥Mp1,q1
< ∞, and f ∈ Mp1,q1 . □
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