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Abstract

It has been analyzed that the particle motion inside a vertical channel while passing across diamond shaped obstacles produces severe effects
on the fluid. Particle interaction with outer boundary, internal obstacles and with the fluid is inspected. An Eulerian based approach using a
computational mesh is used in which solid particles are allowed to move freely in fluid domain. Fluid and particle interaction inside the
whole domain is carried using Fictitious boundary method (FBM). A multigrid finite element method combined with the fictitious boundary
method (FEM-FBM) is used for the simulation of in-compressible fluid flow along with rigid particle falling and colliding inside a fluid
domain. A collision model to treat the Particle-obstacle and particle-wall interactions is used to avoid particle overlapping. The particulate
flow is evaluated using an open source multigrid finite element solver FEATFLOW. Numerical investigations are executed in view of different
particle positions and different alignment of diamond shaped obstacles. Effects on the movement of the particle and on the interaction of the
fluid-particle system due to particle-wall, particle-Obstacle, particle-fluid interactivity has been analyzed.
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1. Introduction

A lot of natural and industrial processes are observed while examining solid particles in fluid for instance
granular flows, sedimentation, particles cluster and multi-phase flows. Motion of particles in fluid covers
a vast area of industrial applications such as grease transport, fluidized interruption, sedimentation, slurry
flow, pulpwood, food processing etc. Many flows occur naturally in various phenomenon such as sand or
dirt particles, lava flows and sedimentation in estuary etc.

In majority of cases, such particle interactions involve collisions with other particles and obstacles present
inside the domain. Engineering applications of fluid-particle, fluid-wall boundaries can be found as
hanging bridges, free-standing towers and high rise buildings inside the atmospheric air. A fundamental
knowledge is lacking for the study of such particle interaction with obstacles inside the domain which
results in different formations assisted by the particle interaction and collisions in modeling of particulate
flows [39]. To inspect the rigid solid-liquid flows [40] various methodologies have been introduced during
the last decade. Particulate flow phenomena is mainly modeled by two approaches, continuum and the
discrete method approach. In continuum method, the mass of a particle is considered as a synthetic
continuum and is constructed on the solution of the conservation equations which works specifically for
flow regimes [1]. Rapid granular flow and slow granular flow concepts have been successfully presented
by Chapman, Ogawa and Rao et al. [1]. Currently, Sokolov and coauthors [2] have utilized a volume set
methodology for the solution of PDE’s combined with generalizations of Euclidean spaces and surfaces.
The method focuses on the discrete approach that takes into account the shifting of particle inside a
domain. The interaction of all the particles with one another and with their moving conditions is modeled
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in this method which is followed by calculating their trajectories, directions and spins [3]. A vast range of
industrial occurrences have been examined using (2D) and (3D) DEM simulations [4, 41].

To predict the behavior of particulate flow with internal obstacles, a basic but thorough knowledge of
particle-obstacle and particle-wall collisions is needed. Particle-particle interactions have been concluded
in recent studies at low Reynolds numbers. Classical lubrication theory suggests that when particle
boundaries reach very near to each other then the lubrication force between them becomes singular and
thus avoids the particles from touching. Lubrication forces are introduced in lattice Boltzmann simulations
[24] and stokes multiple simulations [25] when solid particles are approaching each other or are nearly
in contact. Brady and Bossis [25] have considered stokes flow assumption using the stokesian dynamic
techniques and have simulated the particulate flow with it. The discrete method is mainly classified
into two approaches for the simulation of particulate flow, (a) the Eulerian approach (b) the Lagrangian
approach. Joseph and Glowinski proposed a similar technique [5] based on this approach. The Lagrangian
approach can be defined on the concept of moving course mesh nodes which moves along with the motion
of particle wall. A reconstruction of this approach is Arbitrary Lagrangian Eulerian Approach (ALE)
[6, 7, 8]. In Eulerian approach the course mesh nodes are fixed at their initial positions which is suitable
for a low computational cost with sufficient numerical estimates.

In this method which is proposed by Glowinski and Singh [9, 10], FEM background carries the rigid
particles inside the fluid channel using an Eulerian approach where rigid particles are handled individually
through Newton-Euler equations. On the other hand, computational grid is altered in ALE technique
near the fluid and particle interface and the process is moved forward with the Lagrangian motion of the
new replaced mesh nodes. A particular treatment of such method is the distributed Lagrange multiplier
method (DLM) coupled with the fictitious boundary method [16, 17, 18, 39] developed by Glowinski
[5, 9, 42, 43]. Patankar et al. [6, 19] introduced a stress field in the particle domain and merged it with
the DLM method to get rid of the necessity to determine particle’s translational velocity. Abbasi et al.
[21] analyzed the phenomenon when multiple structures are in wake of one another, the mechanism
depends upon the adjustment, gap distance, shape and size of structures. Inoue et al.[22] implanted a
technique based on finite difference method in order to find the solution of 2D unsteady compressible
Navier-Stokes equation and analyzed the wake achieved by two square obstacles arranged on staggered
positions by considering space effect between them in a uniform flow at low Mach numbers. Wang et
al.[23] considered computational mesh as a horizontal soap film tunnel along with two circular obstacles
placed in staggered positions.

In order to prevent the complicated collisions of the particles with each other, channel wall and internal
obstacles, a true definition for the collision model [26] is needed because collision or near collision of the
solid rigid particles can cause extreme problems in case the rigid particles are very close to each other and
thus remarkably increase the evaluation and cost of simulation [27]. Recently, Usman [28] presented a
brief comparison of distinct collision models for circular rigid particles in a two dimensional framework
in fluid channel. In other observations, researchers have concluded that for rough particles, physical
touching might happen which may consequently effect the dependent motion of the rigid solid particles
[29]. Ardekani and Rangel [30] used distributed Lagrange multiplier approach to simulate unsteady
motion and collision of two particles in fluid having a dilute suspension with control volume approach
[31]. A simple algorithm to simulate colliding particles has been discussed by Patankar [32].

The current study is to find the numerical behavior of falling rigid particle colliding and passing near
diamond shaped internal obstacles and interacting with the boundary of the domain in a fluid channel.
The computational mesh is chosen with an Eulerian based method which is fixed and is independent of the
particle structure and dimensions. To control particle collisions, in case of colliding with internal obstacles
and with the wall of the channel, collision models are used to intercept this interacting process. We have
defined particle-cylinder collision model and particle-wall collision model for particle interactions with
diamond shaped obstacles and collision of particle with wall.

2. Mathematical Modeling

Consider fluid flow along with a solid particle having mass M, and density p;. py is the fluid density
and v represents the fluid viscosity. The domain occupied by the fluid is Qf and the domain occupied
by the particle is Qg and dQ; represents boundary of the particle. Hence, the total domain is given by
Qr=Q rU Qg

2.1. Incompressible Fluid and Particle Motion

The motion of incompressible fluid in the domain € is governed by the Navier-Stokes equations [34]
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where o is the total stress tensor in the fluid phase, defined as,

pf<@+u-w)—v-c:o, V-u=0 Vte(0,T), 2.1)

6 =—pl+pu; [Vu n (Vu)T] . 2.2)

Here, fluid velocity is u, p is the pressure, coefficient of viscosity is ty and I is the identity tensor.

The translational and rotational motion of the freely moving rigid particle in fluid is due to the hydro-
dynamic forces, collision forces due to particle and outer wall and particle-cylinder interaction and
gravitational acceleration. The Newton-Euler equations, in this case, takes the form

dU

dt

U, and oy respectively are the translational and angular velocities of the particle, M; is the particle mass
and we write AM; = My — My, where My is the mass occupied by the fluid in the same volume as M.

Drag and lift forces acting on the particle are represented by F;, F', are the particle collision forces, the
moment of inertia tensor and the resultant torque acting about the center of mass of the particle is I and
T respectively and g denotes the gravitational acceleration.

The position X of the center of mass of the particle and its angle 6, can be obtained after integrating the
following kinematic equations [35], [36],

dX, dGs_w
da 7 de 7

do
M; = (AM;)g+Fs+F', Isd—ts+a)s><(lsa)s):TS. (2.3)

(2.4)

2.2. Drag and Lift Hydrodynamic Forces and Torque

The drag and lift forces Fy and the torque T’ acting on the mass center of the particle can be obtained by
[37]

Fo=(-1) /a (emdr  T=(-1) /a , (X—X.)x (c-m)dT 2.5)

where the unit vector n acts normal to the boundary dQ; of the particle. Once the drag force is calculated,
the drag and lift coefficients can be found using

2F; 2F;
Ca= 2= C=—t, (2.6)
pU-D pU-D

where U and D is the characteristic velocity and length respectively.

2.3. Fluid-Particle Coupling using Fictitious Boundary Method

At the fluid and particle interface dQ;, no-slip boundary conditions are applied and the velocity
u,(X) VX € Qq is given by,

us(X)=U,+ o, x (X —X,). 2.7)

The fictitious boundary method (FBM) works over a multigrid finite element method by incorporating the
particle domain within the fluid domain. The additional constraints arising due to the particle’s boundary
motion at the particle-fluid interface are included in the Navier-Stokes equations, by extending the fluid
domain with the combined fluid and particle domain, which takes the form,

Vau=0 VX € Qr
pr(2% 4 uVu)-V.c=0 VX €Qy (2.8)
u(X)=Us+o,x (X—X;) VXeQ,
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2.4. Particle Collisions

We will use a collision model for the calculation of particle-wall collision forces F,Y presented by
Glowinski, Joseph, Singh and coauthors [10] and present a modified model for the particle-cylinder

collision forces F¢. Therefore, F' = F¢+ FY.
Particle-Cylinder Collision Model

We have introduced a small change in the collision model for interacting particle and cylinder proposed in
[10], that is, we have considered the circular cylinder as a second particle and hence the model takes the
form

for DS7C >Ri+R.+p,
(XS_XC) (Rs+Rc+p_Ds,c)27 for R5+Rc§Ds,c§Rs+Rc+p7 (2.9)
(Xs_Xc) (Rs +RC_DS,C)7 fOF Ds,c <R;+R.

Fi=

N
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the coordinates of the center of the cylinder are X, and Ry and R, denotes the radius of particle and
cylinder respectively. The distance between X and X is Dy . = | X — X|. p is the minimum distance to
activate the force of repulsion between particle and cylinder and is taken one mesh element apart. Values
for the positive stiffness parameters €, and 8;, are chosen as such to avoid discontinuity or singularity.

Particle-Wall Collision Model

For particle-wall collision model, the corresponding model is expressed by [10]

0, : for D,>2R;+p,
FV = { L (x,-X, 2Rs+p—D;), for 2R, <D,<2Rs+p, (.10
3 (X,-X,) (2R, D)), for Dy <2R;

where X ; is the coordinate of the center of mass of the nearest imaginary particle pls imagined on the
. . ! . .

boundary wall with respect to the particle. D/S = |X; — X,| is the distance between the center of the

imaginary particle p/s and the mass center of particle. €, and 8;, are small positive stiffness parameters for

: . : € & . .
particle-wall collisions, usually their values can be taken as €, = ?p and 8;, = — in the calculations.

“p
2
3. Numerical Results

Behavior of a falling particle inside a vertical channel passing across four internal diamond shaped
obstacleshas been examined. The falling particle disturbs the pressure field and consequently disturbs the
fluid motion as well as the hydrodynamic forces (drag and lift forces) acting on the surface of Obstacles
while it crosses the Obstacles. The disturbance propagates further towards the following obstacles while
particle passes across the obstacles and results in different patterns for fluid and particle motion. The
collisions and near-overlapping of particle with obstacles and with the outer wall are averted using
collision models discussed in equation (2.9) and equation (2.10). The dimension of the fluid domain is 15
and 3 along y-axis and x-axis respectively as shown in figure 3.1. The falling rigid 2D particle has density
ps = 1.25. Density of in-compressible fluid is taken p; = 1.0 and the Reynolds number is Re = 100.
In all the numerical simulations we consider the particle of radius R = 0.25. We have considered that
initially at # = O the fluid and particle are both at rest. The gravitational acceleration g = 980 is the only
force to start the falling motion of the particle. Zero dirichlet boundary conditions at the walls of the
fluid channel are assumed. The simulations are carried out on fixed computational meshes by using CFD
code FEATFLOW [38]. Moreover, the effect of spacing between different Obstacles is also numerically
studied by increasing their internal gap and moving the second and fourth Obstacle at different positions.
Numerical simulations are executed on mesh refinement level-5 comprising of 81,920 number of elements
in such a way that mesh independence is guaranteed at this refinement level. The experiments are
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performed keeping three different initial positions of the particle in x-direction while retaining the same y-
position. In the first basic case, diamond shaped obstacles are placed at positions (1.5,12),(1.5,9),(1.5,6)
and (1.5,3) whereas a variety of configurations for the position of obstacle are selected comprising of
inline Obstacles and staggered obstacles with each other. Moreover, the study includes effect of moving
second obstacle in negative x-direction and fourth Obstacle in y-direction at three different positions.

| | |
o1 R0 40 f+ =0 4
Pian Pian Pian Piin Pian Piin
PR PR A [ P ]
|
Prn Pian Pian Pian Pian Pian
PR Pian

g pi

Pian Piin
(a) Casel (b) Case2 (c) Case3 (d) Case4 (e) Case5 (f) case6

Figure 3.1: schematic of different course meshes with obstacles and particle

Images in figure 3.1 show the different position of diamond shaped obstacles and particle. Different
images show the position of particle at different times and the effect of particle on fluid motion and its
behavior. Fig 3.1 shows coarse meshes and using these meshes we have numerically performed all the
simulations on these meshes with different configurations of the obstacle and particle position. Snapshots
of some selected cases are presented in the study but complete cases are discussed using tables. These
are total 18 cases in which we have found all the numerical results and simulations are performed with
obstacles placed in inline and staggered positions which are as follows:

() (1.5,12.0),(1.5 9 0),(1.5,6.0), (1.5,3.0) (i) (1.5,12. ),(15 0),(1.5,6.0),(1.5,4.0)
(i) (1.5,12.0),(1.5,9.0),(1.5,6. 0),(1 20) (v) (1.5,12.0),(1.0,9.0),(1.5,6.0),(1.5,3.0)
(v) (1.5,12.0),(1.0,9.0),(1.5,6.0),(1.5,4.0) (vi) (1.5,12.0),(1.0,9.0),(1.5,6.0),(1.5,2.0)

Figure 3.2(a) to 3.2(f) shows four obstacles placed in an inline arrangement. The first obstacle C;
is placed at position (1.5,12) and C; is at position (1.5,9). The third obstacle Cs is placed at position
(1.5,6) and fourth Obstacle Cy is at position (1.5,2) while the falling position of particle is (1.80,14)
inside a fluid channel. In figures 3.2(a) to 3.2(f), particle is shown colliding and passing from right side
of the obstacles.
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Figure 3.2: Snapshots of falling particle at different time steps

Different images in figure 3.2 show the position of particle at different time and the disturbance it creates
while falling down and crossing the obstacles.

3.1. Trajectories

Now we present the trajectories of a falling particle while colliding and passing across the inner diamond
shaped obstacles. Trajectories represents the path of the falling particle in a fluid channel while crossing
the obstacles. The figures of trajectories show that rigid particle falls either from the right side or the left

side of the obstacles. In fig 3.3(a), obstacles are in inlined formation while in fig 3.3(b-f), obstacles are
placed in a staggered formation.
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Figure 3.3: Trajectories of particle with different starting positions

We denote by C1, C,, C3 and Cy the first, second, third and fourth obstacles respectively. Similarly, we will
denote Cj, and C;, for the x-position of the first and second Obstacle. In each case C; and C; are fixed
at position (1.5,12) and (1.5, 6) respectively while obstacle C; is set on two different positions (1.5,9)
and (1,9). In a similar fashion, Cy is set on three different positions (1.5,3),(1.5,4) and (1.5,2). Figure
3.3(a)shows results when obstacles are in an inline position i.e. the first Obstacle Cj is at position (1.5,12),
second obstacle C; is at position (1.5,9), third obstacle Cj is at position (1.5,6) and fourth Obstacle Cy is
at position (1.5,3). The simulations are performed by taking three particle starting positions (1.30, 14),
(1.70,14) and (1.80,14) as shown in red, green and blue lines respectively. When the starting position
of the particle is (1.30, 14), it passes from left of the obstacles while colliding and interacting with the
obstacles. For the other two starting positions, the particle passes from right side of the obstacles. It has
been concluded that the starting position of the particle, gap between the obstacles and the arrangement of
obstacles (inline or staggered) have a deep impact on the fluid motion and suggest various paths for the
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particles movement. Such as in figure 3.3(c) the red line shows that particle passes through the left side of
the obstacles, green and blue lines show that the particle passes the obstacles from left side. In figures
3.3(a) to 3.3(f), the trajectories of particle are shown with internal diamond shaped obstacles having inline
and staggered arrangements. In these figures red, green and blue colors represent the falling positions of
particle (1.30,14) ,(1.70,14) and (1.80, 14) respectively.

3.2. Drag and Lift coefficients on diamond shaped obstacles

We have presented the fluctuation in drag coefficient under different scenarios of obstacle arrangements.
These scenarios consists of various initial positions of the particle, position of obstacles and the gap
between obstacles. The oscillations represented by graphs in figure 3.4 show drag coefficients calculated
on obstacles C1, C; and C3. Figure 3.4a shows graph of drag coefficient on obstacle C, figure 3.4b shows
the graph of drag coefficient on obstacle C; and figure 3.4c shows the graph of drag on Obstacle C3. The
graph shows that the drag value instantly shoots up to a very high value when the particles comes in
contact or crosses the obstacle Cy, C, and Cs, and gradually reaches its mean value after crossing the
obstacle. Some selected cases for different configurations of obstacles have been shown in the graphs.

Figure 3.4 shows result for the case (i) when obstacle C;, C; and C3 are inline at positions (1.5,12),
(1.5,9) and (1.5,6) respectively and particle’s starting position is (1.30,14).

s 2s
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- ] —
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an 4

(a) Drag on C; (b) Drag on C; (c) Drag on C3

Figure 3.4: case(i), Particle position=(1.30, 14.0)

Figure 3.5 shows result for the case (ii) in which obstacles C}, C; and Cj are inline at positions (1.5,12),
(1.5,9) and (1.5,6) respectively with particle starting position (1.70, 14). In fig 3.5a, fig 3.5b and fig 3.5c,
graphs of drag on Cy, C; and C3 are shown respectively.
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(a) Drag on C; (b) Drag on C; (¢) Drag on C3

Figure 3.5: case(ii), Particle position=(1.70,14.0)

Figure 3.6 shows result for the case (iii) in which obstacles Cy, C, and C; are inline at positions (1.5,12),
(1.5,9) and (1.5,6) respectively with particle starting position (1.80, 14).
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Figure 3.6: case(iii), Particle position=(1.80, 14)

Figure 3.7 shows result for the case (iv) in which obstacles Cy, C; and C3 are arranged in a staggered
position at (1.5,12), (1.0,9) and (1.5, 6) respectively along with the particle starting position (1.30, 14).

06 08 04 08 o8 12
t t t

(a) Drag on C; (b) Drag on C, (c) Drag on C3

Figure 3.7: case(iv), Particle position=(1.30, 14)

Figure 3.8 shows result for the case (v) in which obstacles C;, C, and C; are placed in staggered positions
at (1.5,12), (1.0,9) and (1.5,6) with particle starting position (1.70, 14).
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(a) Drag on C; (b) Drag on C; (c¢) Drag on C3

Figure 3.8: case(v), Particle position=(1.70, 14)

Figure 3.9 shows result for the case (vi) in which obstacles C;, C; and C3 are staggered at positions
(1.5,12), (1.0,9) and (1.5,6) with particle starting position (1.80, 14).



Solid Particle Interacting with Diamond Shaped Obstacles

N

—

-~

o 02 0.4

0s o8 o8 1

t

(a) Drag on C; (b) Drag on C; (c) Drag on C3

Figure 3.9: case(vi), Particle position=(1.80, 14)

3.3. Max/min drag value, time to cross obstacles and x-Shifts by particle

The drag values on obstacles C; and C3 changes rapidly as soon as the particle reaches near the obstacle
and starts crossing it. The drag values are more extreme if the particle passes by the obstacle while
touching or colliding with it as shown in table 1, table 2, table 3, table 4, table 5 and table 6.

Table 1: Case (i): Time to cross obstacles, shifts and drag coefficient

Particle Czon () CyonC3 p p
Position min | max min | max 2 4
.30 -1.1566 25724 -3.1146 13187 0.186 0.105
1.70 -1.4575 0.6410 -4.7965 14.0455 0.099 0.105
1.80 -1.4186 04447 -5.1015 11.7693 0.099 0.099
Particle SH S3 S4
Position min | max min | max min | max
1.30 0.4023 — 0.5915 — 0.7132 —
1.70 — 2.4925 — 2.2556 — 2.1322
1.80 — 2.5317 — 2.3959 — 2.2828
Table 2: Case (ii): Time to cross obstacles, shifts and drag coefficient
Particle Cy on () C,yonC3
Position min | max min | max ) l4
1.70 -4.6552 89458 -2.4851 1.0109 0.117 0.096
1.80 -5.0050 11.209 -2.7978 0.9981 0.096 0.096
Particle SH S Sy
Position min_ | max min__ | max min_ | max
1.30 0.4857 — 0.7062 — 0.6262 —
1.70 — 2.5692 — 2.3755 — 2.3630
1.80 — 2.5072 — 2.3302 — 2.4009

Table 3: Case (iii): Time to cross obstacles, shifts and drag coefficient

Particle CyonCy C;onC3 ; ;
Position min | max min__ | max 2 4
1.30 -11.9968 4.6287 -0.85815 2.2524 0.123 0.096
1.70 -4.5313  8.9161 -2.9473 0.4273  0.111 0.093
1.80 -4.8605 9.5039  -3.0186  0.22557 0.108 0.093
Particle SH S Sy
Position min | max min | max min | max
1.30 0.3980 — 0.5643 — 0.6740 —
1.70 — 2.4716 — 2.2531 — 2.1849
1.80 — 2.4183 — 2.2679 — 2.1124
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Table 4: Case (iv): Time to cross obstacles, shifts and drag coefficient

Particle C,yonC) S Sy

Position min [ max 3 min | max min [ max
255 46711 12596 0081 — 25544 — 25428
2.62 -3.7473  2.0074 0.081 — 2.6514 —  2.6162

Table 5: Case (v): Time to cross obstacles, shifts and drag coefficient

Particle C,on () S3 Sy

Position min [ max & min | max min | max
255 46797 12598 0081 — 25532 — 25761
2.62 -3.7491 2.0163 0.081 — 2.6504 — 2.6174

Table 6: Case (vi): Time to cross obstacles, shifts and drag coefficient

Particle C,4 on () S Sy

Position min | max & min | max min | max
255  -46797 12598 0.081 — 25532 — 25761
262 -37491 20163 0081 — 26504 — 26174

Table 1 shows simulations performed keeping case (i) and using three particle starting positions (1.30, 14.0),
(1.70,14.0) and (1.80,14.0). Table 2 shows simulations performed keeping case (ii) and using three par-
ticle starting positions (1.30, 14.0), (1.70,14.0) and (1.80,14.0). Table 3 shows simulations performed
keeping case (iii) and using three particle starting positions (1.30,14.0), (1.70, 14.0) and (1.80, 14.0). Ta-
ble 4 shows simulations performed keeping case (iv) and using three particle starting positions (1.30, 14.0),
(1.70,14.0) and (1.80, 14.0). Table 5 shows simulations performed keeping case (v) and using three par-
ticle starting positions (1.30, 14.0), (1.70,14.0) and (1.80, 14.0). Table 6 shows simulations performed
keeping case (vi) and using three particle starting positions (1.30,14.0), (1.70,14.0) and (1.80, 14.0).
The table shows maximum drag value or minimum drag value on obstacle C, and obstacle C3 during
the course when particle crosses them. Evidently, the particle takes more time to pass the obstacle if it
collides the nearby obstacle. On the other hand, if particle passes across the obstacle without touching
it then it takes less time to cross the obstacle. The fluid behavior spread across the diamond shaped
obstacles controls the motion of the particle in such a way that the particle may or may not collide with
the obstacle. Table 1-6 show the maximum and minimum values of drag on the diamond shaped obstacles
and the time to cross obstacles with different arrangements of obstacles. #, and #4 represent the time to
cross obstacles C, and Cy4 respectively. Similarly, S, S3 and Sy are the shifts attained by the particle while
crossing C;, Cs3, and Cy. If the falling particle shifts towards the right side with a value greater than 2.5
or shifts towards the left side with a value less than 0.4 while passing and crossing the obstacle then it
assures that the particle has collided while crossing the obstacle. In some cases the particle passes without
colliding or touching the obstacle.

4. Conclusion

In this research work, we have performed numerical simulations using a direct approach and simulated
the particulate flow by using FBM. We have examined the behaviour of falling particle under the action
of gravitational acceleration, the collision and interaction of particle with four internal diamond shaped
obstacles within a fluid flow channel. We have also discussed the behavior of obstacles. In case of four
circular obstacles the first obstacle is fixed and second obstacle is placed at two different positions in
negative x-direction and fourth obstacle is placed at three different positions along y-direction. A solid
particle which is falling from three different positions, this particle is interacting and colliding with all
the diamond shaped obstacles. The main benefit of FBM is that the Computational coarse Mesh is fixed
(Eulerian) w.r.t time and less computational effort is required to pass the particle from obstacles. The
diameter of the particle which is falling down and the diagonal length of the diamond shaped obstacle are
same.

A specific collision model is also defined for the collision of the particle and diamond shaped obstacles.
Force of collision with wall is also defined in the code of FEATFLOW. Benefit of these collision models is
that it can treat the scenario when the particle interact and start to overlap with obstacles due to numerical
errors. When a particle comes in the vicinity of any obstacle, the collision model gets activated and
produces very promising results.
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We have discussed the numerical results for a falling rigid particle crossing and passing around diamond
shaped obstacles under the action of gravitational acceleration inside an incompressible fluid channel,
in which a particle is allowed to fall freely from three different initial positions. We have calculated the
numerical results on a fixed computational mesh with refinement level 5. We have examined the change in
the behavior of fluid inside a channel when a particle starts to cross the obstacles and meanwhile interacts
with them. We used different configurations for the diamond shaped obstacles (staggered and inline)
to examine the fluid behavior in a channel. The numerical results are discussed in detail by calculating
the max/min time #, to cross second obstacle, max/min time #4 to cross fourth obstacle. We have also
calculated max/min shifts s, s3 and s4 on obstacles C,, C3 and C4. Drag coefficient on obstacle 1, obstacle
2 and obstacle 3 while particle crosses each of them is also presented.
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