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Abstract

This paper aims the study of electrically conducting Newtonian fluid flow and heat transfer considering the slip at the moving belt with
temperature dependent viscosity. Adomian decomposition method (ADM) is employed to solve the non-linear system of equations. Explicit
expression are obtained for velocity profile and temperature distribution. Effect of variable viscosity parameter, slip, Hartmann number,
Brinkmann number and Stoke number are discussed and graphically shown.
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1. Introduction

Hydromagnetic fluid flow under the influence of viscous forces and heat transfer are of great importance
in understanding a variety of geophysical, plasma aerodynamics, mechanical engineering manufacturing
processes and MHD energy system [1, 2]. The flow of incompressible viscous fluid between parallel plates
channels in the presence of transverse magnetic field was first studied by Hartmann [3]. Attia et al [4]
numerically investigated the effect of an external uniform magnetic field as well as the action of an inflow
perpendicular to the plates together with the influence of the pressure gradient on the flow and temperature
distributions assuming temperature dependent viscosity. In all the study except [4], the physical properties
are considered to be constant. However, this may not happen in several application where the physical
properties such as viscosity, thermal conductivity, density etc, may change with temperature. The effect of
temperature dependent viscosity and thermal conductivity on the classical couette flow between parallel
plates is investigated by Panktokratoras [5]. The same effect are also studied in micropolar fluid past
a continuously moving plate with suction and injection in the presence of magnetic field is studied by
Patowary et al [6]. Makinde [7] investigated thin film flow along a heated inclined plate due to the
hydrodynamically and thermally developed temperature dependent viscosity of Newtonian fluid. In all
the mentioned studies, the effect of slip condition is not considered.
Most of the MHD flow with the assumption of temperature dependent viscosity yields the nonlinear
system of equations. The exact solution of these system are limited, and these nonlinear equations should
be solved either numerically or semi- exact analytical methods. In this paper, we introduced Adomian
decomposition method (ADM) [9, 10] to solve the nonlinear system with slip presented by Navier [8]
at the boundary. To the best of our knowledge, no attention has been given to study the effect of slip
and temperature dependent viscosity MHD on Newtonian fluid flow from moving heated belt. Thus, the
primary objective of this work is to present the analytical solution of the mentioned problem by ADM
[9, 10].
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2. Governing Equations

The basic equations governing the motion of steady, incompressible and non-isothermal MHD Newtonian
fluid are

∇.V = 0, (2.1)

ρ
DV
Dt

= −∇p+∇τ +ρf−σB0
2V, (2.2)

ρCp
DT
Dt

= k∇
2T + τ.L, (2.3)

where V is the velocity vector, ρ is the density, p is the pressure, f is the body force per unit mass, B0 is
the components of magnetic field, σ is the electrical conductivity, Cp is specific heat, T is the temperature,
k is thermal conductivity, τ is extra stress tensor and D/Dt is the material time derivative. The constitutive
equation for Newtonian fluid is

τ = µA1, A1 = (∇V)+(∇V)T , (2.4)

where µ is the viscosity, A1 is the first Rivlin-Ericksen tensor and the superscript T stands for the transpose
of tensor.

3. Formulation of Problem

Consider a container filled with non-isothermal and incompressible electrically conducting (MHD)
Newtonian fluid. Slippery and heated belt is assumed that is moving vertically upward through this
container with constant speed U (Fig.1). The belt is maintained at a constant temperature Tw and Ta is the
free stream temperature with Tw>Ta. Since the belt moves upward and passes through the fluid, it picks
up a thin film fluid of thickness δ . Due to gravity, the fluid film tends to drain down the belt.

Figure 3.1: Geometry of the problem

For simplicity we assume that:
1. The flow steady, laminar and uniform.
2. The film thickness δ is uniform.
4. The applied magnetic field B0 is transverse to the belt.
5. The thermal conductivity k is constant.
6. The pressure is considered to be atmospheric p0 at the surface.
7. The viscosity µ of the fluid is considered to be a function of temperature.
We choose rectangular coordinates system having the y-axis along the belt in the upward direction while
x-axis normal to it. The applied magnetic field B0 is in x direction. We seek the velocity and temperature
profiles of the following form

V = (0,v(x),0) , T = T (x), employing τ = τ(x). (3.1)



40 International Journal of Emerging Multidiciplinaries

Substituting (3.1) in (2.1), equation of continuity is identically satisfied and the momentum reduce to the
following form

dτxx

dx
+ρ fx =

∂ p
∂x

, (3.2)

dτxy

dx
+ρ fy −σB2

0v =
∂ p
∂y

, (3.3)

where fx and fy are body forces in x and y directions. Since the y-coordinate is in upward direction and
gravitational force is in downward direction, so fx=0 and fy=−g, and above equations (3.2 -3.3) takes the
form

dτxx

dx
=

∂ p
∂x

, (3.4)

dτxy

dx
−ρg−σB2

0v =
∂ p
∂y

. (3.5)

Similarly, energy equation (2.3) becomes

k
d2T
dx2 + τxy

dv
dx

= 0. (3.6)

Using profile (3.1) in (2.4), the components of extra stress tensor τ are obtained as :

τxy = τyx = µ

(
dv
dx

)
, τxx = τyy = 0. (3.7)

The boundary conditions are

v− γ
dv
dx

=U, T = Tw, at x = 0, (3.8)

dv
dx

= 0, T = Ta, at x = δ , (3.9)

where γ represents the slip coefficient. By substituting τxx = 0 in (3.4), we find that P = P(y) only and
we assume that the pressure P is atmospheric pressure p0, so ∂ p

∂y = 0, Therefore by substituting τxy from
equation (3.7), equation (3.5) and (3.6) becomes

d
dx

[
µ

(
dv
dx

)]
−ρg−σB2

0v = 0, (3.10)

k
d2T
dx2 +µ

(
dv
dx

)2

= 0, (3.11)

Assuming that the viscosity of the fluid is temperature dependent, such that

µ = µ(T ) = µ0e−α(T−Ta) ≈ µ0 {1−α(T −Ta)} , for α << 1, (3.12)
where µ0 is the fluid viscosity at ambient temperature Ta and α is the coefficient of variable viscosity that
determine the strength between viscosity µ and temperature T . Substituting equation (3.12) in (3.10) and
(3.11), we get

d
dx

[
µ0 {1−α(T −Ta)}

(
dv
dx

)]
−ρg−σB2

0v = 0, (3.13)

k
d2T
dx

+µ0 {1−α(T −Ta)}
(

dv
dx

)2

= 0. (3.14)

Introducing the following dimensionless parameters

v∗ =
v
U
, x∗ =

x
δ
, θ =

T −Ta

Tw −Ta
, β = α(Tw −Ta),

St =
ρgδ 2

Uµ0
, M =

σB2
0δ 2

µ0
, Br =

µ0U2

kδ 2(Tw −Ta)
, γ

∗ =
γ

δ
. (3.15)
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where β , St , M , Br and γ∗ are variable viscosity parameter, Stokes number, magnetic parameter,
Brinkman number and slip parameter. After removing ∗, we obtain the following dimensionless non-
linear differential equations

d2v
dx2 −βθ

d2v
dx2 −β

(
dv
dx

)(
dθ

dx

)
−St −Mv = 0 , (3.16)

d2θ

dx2 +Br

(
dv
dx

)2

−Brβθ

(
dv
dx

)2

= 0, (3.17)

with boundary conditions

v− γ
dv
dx

= 1, θ = 1, at x = 0, (3.18)

dv
dx

= 0, θ = 0, at x = 1. (3.19)

The exact solution of above non-linear system of equation along with the boundary conditions seems
impossible. So, in order to solve the above system, Adomian decomposition method (ADM) will be used.

4. Solution by ADM

According to ADM , the differential equations (3.16)-(3.17) can be written in operator form as

Lv = St +Mv+βθ
d2v
dx2 +β

(
dv
dx

)(
dθ

dx

)
, (4.1)

Lθ = Brβθ

(
dv
dx

)2

−Br

(
dv
dx

)2

, (4.2)

where L = d2

dx2 is the differential operator and therefore applying the inverse operator L−1 =
∫ ∫

(∗)dxdx
on both sides of equation (4.1) and (4.2), we get

v(x) = ax+b+St
x2

2
+ML−1(v)++βL−1

[
θ

d2v
dx2

]
+βL−1

[(
dv
dx

)(
dθ

dx

)]
, (4.3)

θ(x) = cx+d +BrβL−1

[
θ

(
dv
dx

)2
]
−BrL−1

[(
dv
dx

)2
]
, (4.4)

where a, b, c and d are constant of integration to be determined. Adomian decomposition method defines
the solution u and θ by an infinite series of components, in the following form

v(x) =
∞

∑
n=0

vn(x), (4.5)

θ(x) =
∞

∑
n=0

θn(x), (4.6)

The non-linear terms θ
d2v
dx2 ,

(
dv
dx

)(
dθ

dx

)
, θ

(
dv
dx

)2

and
(

dv
dx

)2

are decomposed by a series of Ado-

mian polynomials

θ
d2v
dx2 =

∞

∑
n=0

An,

(
dv
dx

)(
dθ

dx

)
=

∞

∑
n=0

Bn,

θ

(
dv
dx

)2

=
∞

∑
n=0

Cn,

(
dv
dx

)2

=
∞

∑
n=0

Dn. (4.7)
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Substituting (4.6), (4.7) and (4.8) in (4.3) and (4.4), we have
∞

∑
n=0

vn(x) = ax+b+St
x2

2
+ML−1

(
∞

∑
n=0

vn(x)

)
+βL−1

(
∞

∑
n=0

An

)

+ βL−1

(
∞

∑
n=0

Bn

)
, (4.8)

∞

∑
n=0

θn(x) = cx+d +BrβL−1

(
∞

∑
n=0

Cn

)
−BrL−1

(
∞

∑
n=0

Dn

)
. (4.9)

Here are first few Adomian polynomials An, Bn, Cn and Dn

A0 = θ0
d2v0

dx2 , (4.10)

A1 = θ0
d2v1

dx2 +θ1
d2v0

dx2 , (4.11)

B0 =

(
dv0

dx

)(
dθ0

dx

)
, (4.12)

B1 =

(
dv0

dx

)(
dθ1

dx

)
+

(
dv1

dx

)(
dθ0

dx

)
, (4.13)

C0 = θ0

(
dv0

dx

)2

, (4.14)

C1 = θ1

(
dv0

dx

)2

+2θ0

(
dv0

dx

)(
dv1

dx

)
, (4.15)

D0 =

(
dv0

dx

)2

, (4.16)

D1 = 2
(

dv0

dx

)(
dv1

dx

)
. (4.17)

To construct the recursive relation needed for the determination of the components v0, θ0, v1, θ1, v2, θ2
and so on. we identify the zeroth components of

v0(x) = ax+b+St
x2

2
, (4.18)

θ0(x) = dx+ e, (4.19)
and the next components are

vn+1(x) = ML−1vn +βL−1An +βL−1Bn, n ≥ 0, (4.20)
θn+1(x) = BrβL−1Cn −BrL−1Dn, n ≥ 0. (4.21)

Set the boundary conditions (3.18) and (3.19) into a decomposition series (4.6) and (4.7)
∞

∑
n=0

vn(x)− γ
d
dx

∞

∑
n=0

vn(x) = 1,
∞

∑
n=0

θn(x) = 1, at x = 0, (4.22)

d
dx

∞

∑
n=0

vn(x) = 0,
∞

∑
n=0

θn(x) = 0, at x = 1. (4.23)

The recursive relation for the boundary conditions are obtained as

v0(0)+ γ
dv0(0)

dx
= 1, θ0(0) = 1, (4.24)

dv0(1)
dx

= 0, θ0(1) = 0, (4.25)
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and the next components of boundary conditions are

vn+1(0)+ γ
dvn+1(0)

dx
= 0, θn+1(0) = 0, n ≥ 0, (4.26)

dvn+1(1)
dx

= 0, θn+1(1) = 0, n ≥ 0. (4.27)

Invoking the boundary conditions (4.24) and (4.25), we get

v0(x) = 1+St

(
1
2

x2 − x− γ

)
, (4.28)

θ0(x) = 1− x. (4.29)

We notice that as γ → 0, the velocity profile of viscous fluid without slip condition is obtained. The next
component v1(x), θ1(x), v2(x) and θ2(x) can be determined by considering the successive iterates of the
recursive relations (43)-(44) and (49)-(50) in the following form

v1(x) = MSt

[
1
4!

x4 − 1
3!

x3 − γ

2
x2 +

1
3

x+ γx+
γ

3
+ γ

2
]
+M

[
1
2

x2 − x− γ

]
− βSt

[
1
3

x3 − x2 + x+ γ

]
, (4.30)

θ1(x) = −BrS2
t

[
β

(
1

20
x5 − 1

4
x4 +

1
2

x3 − 1
2

x2 +
1
5

x
)
+

(
1

12
x4 − 1

3
x3

+
1
2

x2 − 1
4

x
)]

, (4.31)
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v2(x) = S3
t Brβ

2
[
− x7

140
+

x6

20
− 3x5

20
+

x4

4
+

x2

10
− 7

30

]
+S3

t Brβ

[
− x6

72
+

x5

12
− 5x4

24

+
1
4
− x2

8

]
+StM2

[
x6

720
− x5

120
− γ

24
x4 +

(
1

18
+

γ

6

)
+

(
γ

6
+

γ2

2

)
x2

−
(

2
15

+ γ
2 +

2γ

3

)
x− γ

3 − 2γ

15
− 2γ2

3

]
+StβM

[
− x5

20
+

x4

4
+

(
γ

3
− 1

3

)
−

(
3γ

2
+

1
6

)
x2 +

(
2γ +

7
12

)
+

7γ

12
+2γ

2
]
+M2

[
x4

24
− x3

6
− γ

2
x2 +

x
3
+ γ

2

+ γx+
γ

3

]
+Mβ

[
−x3

3
+ x2 − x− γ

]
+Stβ

2
[
−1+

3x2

2
− x− γ +

x4

4

]
, (4.32)

θ2(x) = S4
t B2

r β
2
[
− x9

1440
+

x8

160
− x7

40
+

7x6

120
− 17x5

200
+

3x4

4
− x3

30
+

x
225

]
+ S4

t B2
r β

[
− x8

672
+

x7

84
− x6

24
+

19x5

240
− x4

12
+

x3

24
− x

160

]
+ S2

t BrβM
[
− x7

126
+

x6

18
−
(

7
60

− γ

10

)
x5 +

(
1

36
− γ

2

)
x4 +

(
2
9
+ γ

)
x3

−
(

1
3
+ γ

)
x2 +

(
2γ

5
+

16
105

)
x
]
+S2

t Brβ
2
[

x6

15
− 2x5

5
+ x4 − 4x3

3
+ x2

− x
3

]
+S2

t BrM
[
− x6

90
+

x5

15
− (

1
12

− γ

6
)x4 − (

1
9
+

2γ

3
)x3 +(γ +

1
3
)x2

− (
7

36
+

γ

2
)x
]
+StBrβM

[
− x5

10
+

x4

2
− x3 + x2 − 2x

5

]
+S2

t Brβ

[
x5

10

− x4

2
+ x3 − x2 +

2x
5

]
+S2

t β

[
− x5

20
+

x4

4
− x3

2
+

x2

2
− x

5

]
+S2

t Br

[
− x4

12

+
x3

3
− x2

2
+

x
4

]
+StBrM

[
−x4

6
+

2x3

3
− x2 +

x
2

]
, (4.33)

...

Upon summing those iterates it is observed that

v(x) = v0(x)+ v1(x)+ v2(x)+ ...., (4.34)

and

θ(x) = θ0(x)+θ1(x)+θ2(x)+ ...., (4.35)

yields the approximate solutions of v(x) and θ(x).
By the help of above expressions, one can find volumetric flow rate, average velocity and heat transfer
from the surface of the belt very easily by using the following formulae

Q = ṽ =
∫ 1

0
vdx, (4.36)

q =−dθ

dx
, at x = 0, (4.37)

where Q is dimensionless flow rate, ṽ is dimensionless average velocity and q represents the rate of heat
flux.

5. Result Discussions

In this paper, thin film flow and heat transfer from moving slippery and heated belt with temperature
dependent viscosity are analyzed. Results are expressed graphically in Figs. (2-11).
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Fig (2-3) show the effect of variable viscosity parameter β on the velocity and temperature profiles for
different values of Br,St ,γ and M. In Fig. (2) it is found that velocity decreases with the increase in β .
Maximum velocity is observed at the belt and minimum at the surface. From Fig.(3), it is also noted that
with the increase in β , temperature decreases near the belt surface and boundary layer called as Hartmann
boundary layer is observed near the surface. Fig. (4) and Fig. (5) show the effect of slip parameter γ for
fixed values of M = 0.5,β = 0.5,St = 0.5 and Br = 15. In Fig.(4), velocity decreases with the increase in
γ . It is observed that when slip is valid there is a jump at the boundary. Velocity is maximum at the belt
surface and minimum at the surface. From Fig.(5), it is again noted that with the increase in γ , temperature
decreases near the belt surface and boundary layer called as Hartmann boundary layer is observed near
the surface. The effect of Hartmann number M on velocity and temperature are depicted in Figs. (6-7). It
is found that the velocity decreases with the increase in the M and temperature increases with the increase
in the M. The velocity is maximum at the belt surface and minimum at the surface. Figs. (8-9) show the
effect of Br on velocity and temperature. Negligible effect of Br is observed on velocity while temperature
increases with in increase of Br . Figs. (10-11) show the effect of St on velocity and temperature. The
velocity decreases while temperature increases with the increase in St .

6. Summary and Conclusion

The nonlinear system of equation arising in the flow of MHD Newtonian fluid with moving slippery and
heated belt with temperature dependent viscosity is solved by ADM. The effect of the physical parameters
like variable viscosity parameter, slip parameter, Hartmann number, Brinkmann number and Stokes
number for velocity profile and temperature distributation are discussed and graphically shown. From this
study we find the following observations:

• Velocity decreases with an increase in M, St and γ .
• Maximum velocity is at the surface of belt.
• Temperature increases with an increase in M, Br and St .
• Hartmann boundary layer occurs near the surface for β and γ .
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Figure 6.1: Effects of β on flow when M = 0.5, γ = 0.2, St = 0.5 and
Br = 15
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Figure 6.2: Effects of β on temperature when M = 0.5, γ = 0.2,
St = 0.5 and Br = 15.
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Figure 6.3: Effects of γ on flow when M = 0.5, β = 0.5, St = 0.5 and
Br = 15
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Figure 6.4: Effects of γ on temperature when M = 0.5, β = 0.5,
St = 0.5 and Br = 15
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Figure 6.5: Effects of M on flow when γ = 0.1, β = 0.5, St = 0.5 and
Br = 15
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Figure 6.6: Effects of M on temperature when γ = 0.1, β = 0.5,
St = 0.5 and Br = 15
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Figure 6.7: Effects of Br on flow when γ = 0.1, β = 0.5, St = 0.5
and M = 0.1
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Figure 6.8: Effects of Br on temperature when γ = 0.1, β = 0.5,
St = 0.5 and M = 0.1
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Figure 6.9: Effects of St on flow when γ = 0.1, β = 0.5, Br = 15 and
M = 0.1
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Figure 6.10: Effects of St on temperature when γ = 0.1, β = 0.5,
Br = 15 and M = 0.1
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