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 Abstract 
 
In recent years Atangana and Baleanu proposed a new fractional derivative with non-singular and non-local kernel, 
this paper formulate a fragmentary request numerical TB model with Atangana-Baleanu derivative. We inquired the 
basic reproduction number and assessment of boundary dependent on genuine information of Khyber Pakhtunkhwa 
Pakistan, Initially we present the fundamental properties of the model, the existence and uniqueness of the model is 
proved through fixed point theory. At last, the model is tackled mathematically through Adams-Bashforth Moulton 
technique. The mathematical results for the extended model of the elements of Tuberculosis is shown graphically to 
feature the actual conduct of the issue and the underlying conditions are presented. The graphical results clarify the 
impact of various boundaries. From the examination it is tracked down that fragmentary request gives more 
understanding with regards to the infection elements. 
 
 Keywords: Atangana-Baleanu fractional derivative; Tuberculosis (TB); Estimation; Simulation. 

1. Introduction 
 

Tuberculosis is one of the top ten causes of death worldwide, it is a bacterial infectious disease resulting from 
bacillus mycobacterium tuberculosis (MTB). It is basically divided into two categories pulmonary TB, which 
affects the lungs and extrapulmonary TB that invades other organs like brain, spine, kidneys, central nervous 
system or lymphatic system, TB can be transmitted from a patient through cough, spit, sneeze or speak, the 
main symptoms of TB includes chronic cough, blood-containing sputum, night sweats, fever and weight loss. 
It all started roughly 3 million years ago in East Africa. According to current WHO figures, roughly a quarter 
of the population of world is at risk of contracting tuberculosis (TB), with more than 10.4 million people 
infected and 1.7 million died due to TB in 2016 [1]. A tuberculosis infected person has a 5-15 percent lifetime 
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danger of contracting the sickness. In Pakistan, the number of individuals diagnosed with tuberculosis (TB) is 
rising, with an estimated 27,000 new cases recorded each year, accounting for 87 percent of all new TB cases. 
According to current incidence data, Pakistan has a total TB case incidence rate of 525,000 cases per year, with 
368,589 cases under treatment and around 56,000 fatalities related to TB per year. Bangladesh and South 
Africa are among the 30 nations with the highest TB burden in 2019 [2, 3]. Tuberculosis comes in three forms: 
active, military, and latent TB infection. Mathematical models are essential for understand the dynamics of 
diseases. In 1962, the first TB model was proposed by Waller et al. [4], which divided the entire population 
into three subgroups. 
In 1967, a proportion dependent mathematical model of tuberculosis infection is developed [5]. Castillo et al. 
presented two-strain, age-structured, and time-delay TB infection models in [6, 7]. In [8], the authors studied 
Mathematical Analysis of the TB Model with Treatment via Caputo-Type Fractional Derivative. In [9] a new 
Hepatitis B model in light of asymptomatic carriers and vaccination study through Atangana-Baleanu 
derivative is analyzed. Liu et al [10] investigated TB dynamics with seasonality by using data to estimate 
model parameters. Robert investigates the impact of relapse and reinfection in the TB infective population in 
[11]. Kim et al. recently used real-world data from the Philippines population to develop a mathematical model 
with optimal TB management tactics [12]. Due to its memory and representation of hereditary qualities, 
fractional-order mathematical models are more prominent and valuable in evaluating real-world phenomena 
than integer-order models [13-17].The integer-order derivative does not investigate the dynamics among two 
points in real-world applications. Because of the limitations of integer order and local differentiation, [18] 
presents numerous concepts on differentials with non-local or fractional order and exponential Kernel. The 
newly presented Atangana-Baleanu derivative has been successfully used to a variety of real-world complex 
issues, as shown in [19-22]. This paper formulate a new AB fractional order model for tuberculosis infection. 
The concept of fixed point theory is used to show the existence and uniqueness of the TB model. The impact of 
various parameters will be explained using graphical data. The following section covers the fundamental 
definitions and results of the AB derivative. The numerical results for the dynamics of tuberculosis are shown 
graphically. 
 

2. Preliminaries  
  

We present some definitions of AB fractional derivative [23], which will be used in our proposed TB model,  

Definition 1. Let    1 , , , 0, 1g H a b b a    , so in Caputo's (ABC) interpretation, the new fractional 
derivatives are, 

                                                  '

1 1
tABC

t a

B t y
a D g t g y E dy









 

 
  

   
                                              (1) 

Definition   2.  The following is the definition of the fractional integral of the new fractional derivative with 
non-local kernel, 

                                         11 tAB
t a

a I g t g t g y t y dy  
    


  

                                             (2) 

Definition 3. If    1 , , , 0,1g H a b b a    , and are not necessary differentiable, the new AB fractional 
derivative in Riemann-Liouville (ABR) sense, 
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                                               
1 1

tABR
t

t yda D g t g y E dy
dt






 


 

 
  

   
                                             (3)  

Theorem 1.  Let we have a function  g t which is continuous on [a, b] then the following holds,               

                                 
1

ABR
t

B
a D g t g y 





 Where  g x =  max .a x b g y                                        (4) 

Theorem 2.  By ABC and ABR derivatives, the Lipchitz condition is satisfied as mentioned below: 

                                     1 2 1 2 ,ABC ABC
t ta D g t a D g t P g t g t                                                                  (5) 

also for ABR derivative we have,                                                                                                          

                                     1 2 1 2 .ABR ABR
t ta D g t a D g t P g t g t                                                                 (6) 

Theorem 3.  The following FDEs, 

                                                       ,ABC
ta D g t s t                                                                                           (7) 

After the application of inverse Laplace transform and convolution result [23]                                                                          
, it gives a unique solution,  

                                        11 .
t

a
g t s t s t d

ABC ABC
 

  
  


  

 
                                                

  (8)                    

3.    TB model formulation with AB derivative 
To formulate the model, we divide the total human population N (t) in six groups. Susceptible is denoted by 
S(t), slowly and rapidly exposed classes are represented by  1E t .and.  2E t  respectively, the recovered 
individuals are represented by R(t).TB infected by I(t.) and treatment is denoted by T(t),a new fractional order 
AB derivative of order  , satisfying 0 1   is considered in this paper, through the following system, 
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
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
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
   

   

    

    

 

  

    

    

    

    

 

                                                                       (9) 
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With initial conditions, 

         1 20, 0, 0, 0, 0.S t E t E t I t R t      

 

Schematic diagramme of TB model 

In model (9), after powerful communication with infected individuals, a fraction.
 

 . .0 1q q  of  .S t  move in to show exposed class 1E  and a fraction  1 .q  disclose straight to the exposed 

class. 2E . In all classes, the parameter  .  indicates the birth rate, the natural death rate is denoted by  in all 
classes 1  and 2  are the disease death rates in I and T compartments.  is the successful transmission 
coefficient, 1  is the alignment from compartment 1E  to 2E  and 2  represents the alignment from 
compartment . 2E  to   and I  states the treatment rate of infected people. In the treatment compartment, the 
individual leave the class at a rate.  that leaves them with incomplete therapy, and depending on their level of 
healing, some of them  T re-enter the infected class I , while the others   1 T   return to the slow 
expose class. 1E . The rate at which the people from treatment class enter the recovered class is represented by 
parameter . The fraction of drug-resistant patients in the treated group is represented by the parameter
 0 1    in the factor  1   .In its basic sense, model (9) will be denoted as, 

 1 1p    ,  2 2p    ,  3 1p      ,  4 2p         

The DFE of the fractional TB model (9) is represented by 0Z  and is given as 0 , 0, 0, 0, 0, 0Z


 
  
 

while the 

endemic equilibrium is denoted by  1 1 2, , , , ,D S E E I T R       and is given by, 
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 

 
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



 
   

 

 








      

 

The basic reproduction number 0R , defined as “the number of secondary cases that one case would produce in 
a completely susceptible population” of the model is computed through the next-generation technique [24] 
presented as, 

  
   

4 2 1 1
0

1 2 3 4 1 2

1
1

p q q p
R

p p p p
  

    
 


  

. 

4.     Existence of Solution for TB model 

By the application of fixed point theory, we show the existence of the model solution in detail. It is difficult to 
determine the exact solution to model (9) due to the nonlinearity involved. However, if the existence of the 
model is proven, the model will have exact results under certain conditions. The system (9) can be structured 
as follows, 

                                               

   
   
   
   
   
   

1

1 2 1

2 3 2

4

5

6

0 , ,

0 , ,

0 , ,

0 , ,

0 , ,

0 , .

ABC
t

ABC
t

ABC
t

ABC
t

ABC
t

ABC
t

D S t p t S

D E t p t E

D E t p t E

D I t p t I

D T t p t T

D R t p t R













  
  
  
  
  
                                                                                

(10)

 

The following is a representation of the system (25) as a result of Theorem 3. 
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     
          

     
          

     
           

     
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     
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1
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2 2 3 2 3 20

1
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1
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1
0 , , ,

1
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1
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1
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t
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AB AB
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AB AB
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







 
  

  

    
  

 
  

  

 
  

  

 
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








   




   




   




   




  






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
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          

1

1
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, ,

1
0 , , .

t
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R t R p t R p R t d
AB AB





  

 
  

  








   






                                           

(11) 

In the following theorem, we prove the Lipchitz condition.  

 Theorem 4. The 1p fulfills the Lipchitz condition and contraction if the below inequality holds,   

.  10 1.     

Proof. We would consider the functions S  and 1S  to show the result, 

                             .    1 1 1, ,p t S p t S           1 1
I S t S t S t S t

N
    

.                                    
 

                                                               

         
     

   

1 1

1 1

1 1 ,

I t S t S t S t S t

S t S t

S t S t

 

 



   

  

                                            
(12)                                   

Where  1 1    .and   1I t  , which implies, 

                                              1 1 1 1 1, , .p t S p t S S t S t  
                                                                     (13) 

As a result, the Lipchitz condition is satisfied. Additionally, if  10 1     then a contraction implies. 
The rest of the cases, which are shown below, are analyzed in the same way: 
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       
       
       
       
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(14) 

Rewrite model (15) in recursive form as follows, 

             

   
           
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(15)

 

Moreover, the initial conditions are,  

.ܵ଴(ݐ) = (ݐ)ଵ଴ܧ,(0)ܵ = (ݐ)ଶ଴ܧ,(0)ܧ = ,(0)ܧ .଴ܫ (ݐ) = ,(0)ܫ . ଴ܶ(ݐ) = ܶ(0), , .ܴ଴(ݐ) = ܴ(0). 

For the difference of successive terms, we get the following results: 
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, ,n n n nE t E t p t E p t E

AB

  


    

          
1

2 1 1 2 1 20
, , ,

t

n nt p E p E d
AB


   

 



   
   
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 3n t       
      2 2 1 3 2 1 3 2 2

1
, ,n n n nE t E t p t E p t E

AB

  


    

                                
          

1

3 2 1 3 2 20
, , ,

t

n nt p E p E d
AB


   

 



   
 

                              

                             
 4n t       

      1 4 1 4 2

1
, ,n n n nI t I t p t I p t I

AB

  


                                                     

(16)                                      

                                
          

1

4 1 4 20
, , ,

t

n nt p I p I d
AB


   

 



   
   

                             5n t       
      1 5 1 5 2

1
, ,n n n nT t T t p t T p t T

AB

  


    

                                
          

1

5 1 5 20
, , ,

t

n nt p T p T d
AB


   

 



   
   

                            6n t       
      1 6 1 6 2

1
, ,n n n nR t R t p t R p t R

AB

  


    

                                
          

1

6 1 6 20
, , .

t

n nt p R p R d
AB


   

 



   
   

Consider,  

                                                    .

   
   
   
   
   
   

11

1 21

2 31

41

51

61

.

.

,

,

,

.

,

,

.

n
n ii

n
n ii

n
n ii

n
n ii

n
n ii

n
n ii

S t t

E t t

E t t

I t t

T t t

R t t












































                                                                                   (17) 

Using the norm on (16), the triangle inequality, and the Lipchitz condition given in (13), we get.  

                        
             1 1 11 1 1 10

1
.

t

n n nt t y dy
AB AB

     
   


 

                                                (18) 
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After applying the same method to the remaining equations, we get 

                    

   
             

   
             

   
             

   
             

   
             

2 2 22 1 2 10

3 3 33 1 3 10

4 4 44 1 4 10

5 5 55 1 5 10

6 6 66 1 6 10

1

1

1

1

1

t

n n n

t

n n n

t

n n n

t

n n n

t

n n n

t t y dy
AB AB

t t y dy
AB AB

t t y dy
AB AB

t t y dy
AB AB

t t y dy
AB AB

     
  

     
  

     
  

 
    

  

 
    

  

 

 

 

 

 


 




 




 




 




 













                                             (19) 

In light of the above result, the following theorem is established. 

Theorem 5. The solution of the TB fractional model exists and unique under the conditions that there exist 
some 0t , such that, 

 
     

0
1 2

1
1,t

AB AB
 

 
  


 


 for 1, 2,..,5.i   

Proof. As we know that  S t ,  1E t ,  2E t ,  I t ,  T t  and  R t  satisfy Lipchitz condition and are bounded 
functions. As a result of using equations (18) and (19), the following relationship is obtained. 

                            

     
     

     
     

     
     

     
     

     
     

     
   

0
1 1 1

0
2 1 2 2

0
3 2 3 3

0
4 4 4

0
5 5 5

0
6 6

1
,

1
,

1
,

1
,

1
,

1

n

n n

n

n n

n

n n

n

n n

n

n n

n n

tt S t
A B A B

tt E t
A B A B

tt E t
A B A B

tt I t
A B A B

tt T t
A B A B

tt t
A B A BR

 
  

  

 
  

  

 
  

  

 
  

  

 
  

  

 
 

 

 
  

 

 
   

 
   

 
   

 
  

 


 

  6 .
n




 
  

                                       (20)

 

The above-mentioned solutions' existence and continuity are proved. We define the following functions to 
prove that the aforementioned functions form a solution for the TB model (9), 
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(ݐ)ܵ                                                       − ܵ(0. ) = ܵ௡(ݐ)−  ,(ݐ)ଵ௡ߚ
(ݐ)ଵܧ − ଶ(0)ܧ = (ݐ)ଵ௡ܧ −  ,(ݐ)ଶ௡ߚ
(ݐ)ଶܧ − ଶ(0)ܧ = (ݐ)ଶ௡ܧ −  ,(ݐ)ଷ௡ߚ

(ݐ)ܫ                                                          − (0)ܫ = −(ݐ)௡ܫ  ,(ݐ)ସ௡ߚ
(ݐ)ܶ                                                        − ܶ(0) = ௡ܶ(ݐ)−  ,(ݐ)ହ௡ߚ
−(ݐ)ܴ                                                        ܴ(0) = ܴ௡(ݐ) −   (21)                                                                 .(ݐ)଺௡ߚ

Further, we get, 

 1 .n t
 

                 
1

1 1 1 1 1 10

1
, , , ,

t

n np t S p t S t p S p S d
AB AB

     
  



 


     

    

              
     1 1 1

1 , , np t S p t S
AB


 


 

        1 1 10
, ,

t

np S p S d
AB


  

   
   

               
     1 1 1 1

1
.n nS S S S t

AB AB
  
   


   

                                                                             
(22)

 

When we repeated the procedure at 0t , we got the following results, 

                                    

1

10
1 1

1 .
n

n
n

tt M
AB AB

 
  



 
    

                                                                     (23) 

Taking limit of equation (23) as n  approaches to , then clearly  1n t
 tends to 0. By the same analysis, we 

have  2n t ,  3n t ,  4n t ,  5n t  and  6n t
 tend to 0 whenever n  tends to . 

 5.     Uniqueness of the solution  

Previously, we used fixed point theory to prove the existence of a solution for model (9). Following that, we 
provide the solution's uniqueness and give the following statement.  

Theorem 6. The solution of the non-integer order derivative model given by (9) possesses a unique solution, 
whenever, the assumption holds, 

                                                    
     1 1

11 0.t
AB AB

  
  

 
     

                                                         (24) 

Proof. We show that the arbitrary order derivative model (9) is unique by considering that another set of 
solutions, such as  1S t ,  1E t ,  2E t ,  1 .I t ,  1 .T t  and  1 .R t  then, 

   1. .S t S t
               1 1 1 1 1 10

1 , , , , .
t

p t S p t S p S p S d
AB AB

    
  


   

 
                                

(25) 
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Applying norm on equation (20), it follows, 

           

   

               

             

1

1 1 1 1 1 10

1 1 1 1

1 , , , ,

1 .

t

S t S t

p t S p t S p S p S d
AB AB

S t S t t S t S t
AB AB

    
  

 
 

  




   




   



                                          (26) 

Which gives, 

                                   1 1 1
11 0.S t S t t

AB AB
  
  

 
      

                                                             (27) 

Clearly,    1S t S t , if condition (24) holds. Similarly,    1E t E t ,    2E t E t ,    1I t I t ,    1T t T t

and    1R t R t . Hence, the solution is unique. 

6.      Numerical approximations 

 The TB fractional model (9) numerical results are obtained here. To do this, we must first express the non-

integer order derivative model given by (9) in fractional Volterra type before applying calculus results. The 

modified Adams Bash forth rule for the AB fractional integral operator is applied to derive the scheme for the 

TB model (9) , The non-integer order derivative model (9) with AB derivative is obtained by applying the 

calculus result to the first equation of the TB model (9) as shown, 

                                1
1 10

10 , , .
t

S t S p t S p S t d
AB AB

 
  

  


   
 

                                          
(28) 

Over 1,p pt t    , the function  1 ,p S can be approximated by the interpolation polynomial  

                      

       
    

    
       

1 1
1 1

1 1

1 1

1

1 1
1

, ,

, ,

, ,
.

p p
p p p p p

p p k p

p p p p

p p

p p p p
p p

t t
M g t y t g t y t

t t t t

g t y t g t y t
t t

h h
g t y g t y

t t
h h

 


 

 

 
 

 

 



 


 
 

 

   

   

                                                         (29) 

Which gives, 
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       

    
    1 1

1 0 1

1 11 11
1 1 1

1 ,

,,
,p p

p p

n n

n t tpk
p n p nt t

p o

S S p t S
AB AB

p t Sp t S
t t d t t d

h h
 

 
  

      



 
  




  



  
      
    
  

                      (30) 

Now, 

                                       1 1
,1 1 1 ,p

p

t

p nt
A t t d
    

                                                                                   (31) 

and, 

                                      1 1
,2 1 ,p

p

t

p nt
A t t d
    

                                                                                     (32) 

We get the following result when we calculate these integrals 

                           
 

1
,1

1 2 2 2
,

1
n p n p n p n p

A h
 




 
 

          



                                               (33) 

                        
 

1
,2

1 1
.

1
n p n p n p

A h
 





 

       



                                                                          (34) 

Finally, 

                 

       
 

          
 
       

1 0 1

1

0 11 1

1 ,

,
1 2 2 2

2
.

,
1 1

2

n n

p

n

p p

S S p t S
AB AB

h p t S
n p n p n p n p

h p t S
n p n p n p


 


 

 
  

 







 


  



 
          

  
 
             


                                      (35) 

From the remaining equations of the system (9), we obtained the recursive formulae follows as, 
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       
 

          
 
        

1 1 0 2 1

2 1

0 12 1 1

1 ,

,
1 2 2 2

2
,

,
1 1

2

n n

p

n

p p

E E p t E
AB AB

h p t E
n p n p n p n p

h p t E
n p n p n p


 


 

 
  

 
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7.      Simulation results  

After the successful execution of modified Adams Bashforth numerical result on the TB model (9), we 
obtained the graphical results of the fractional order TB model (9), by considering and assigning values of 
fractional parameter ,   and  0,1  . The time interval in the graphical results is kept as 300 units. The 
parameters used in the graphical results are projected based on the available TB data from NTP Pakistan. The 
graphical behavior of the model (9) and the effect of   transmission rate on the susceptible, exposed, infected, 
treated and recovered classes for 0.01,0.90  is shown in Figure 1, likewise, the effect of   transmission on 
the exposed, infected and recovered individuals for 0.01,0.90   is given in Figure 2. 

Table 1: Parameters setting for the TB model (9). 

Parameter Description          Baseline value   Reference 

  Contact rate 0.6001 Fitted 

  Recovery rate  0.0100 Fitted 

  Treatment rate of 

infective individuals 

0.1500 Fitted 

  Natural mortality rate 1/67.7 Pakistan Bureau of  Statistics 

[5] 

1  Disease induced death  

rate in I  

0.2738 Fitted 

                                                                        Birth rate                 450,862.20088                    Estimated 

2  Disease induced death 

rate during treatment 

0.1000 Fitted 

  Leaving rate of 

treated individual re-

enter to I or 1E  

1.0649 Fitted 

  Failure of  treatment  0.2959 Fitted 

1  
Rate of moving from 

1E to 2E  

0.2351 Fitted 

2  Transfer rate from 2E  

to I  

0.2001 Fitted 

q  Fraction of susceptible 

individuals being 

infected 

0.5259 Fitted 
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                                              (a)                                                                          (b)                                                                                                                          
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\  

 

                                             (c)                                                                         (d) 

 

                             (e)                                                                 (f) 

Fig. 1 Simulation of TB model (9) with AB derivative. 
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(a)                                                                            (b) 

 

(c)                                                                            (d) 

 

                                 (e)                                                                           (f) 

Fig. 2 Simulation of TB model (9) with AB derivative. 
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8.      Conclusion 
 

We successfully analyzed a TB model with an AB derivative. Data from NTP Khyber Pakhtunkhwa, Pakistan, 

was used to parameterize model parameters utilized in numerical simulations from 2002 to 2017. We obtained 

numerical results by assuming the fractional parameter with different values and provided a comprehensive 

discussion. The essential results of the fractional order model have been analyzed and briefly described. An 

iterative method was used to find the solution to the TB model. Fixed theory was used to prove the model 

solution, uniqueness, and existence. It can be perceived from the graphical results that newly introduced 

derivative for the TB model provides flexible results that might be more useful as compared to integer order 

derivative. If 0 1R  , then 0Z is GAS. When 0 1R  , it also possesses a unique 1D and is Global asymptotic 

stable. Finally, numerical simulations of the model are shown to verify the theoretical results, to show the 

effects of model parameters and highlight the effect of TB infection. 
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