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 Abstract 
 
A viscous, incompressible fluid flows between two inclined planar walls. The walls are able to extend and decrease in size. By 
substituting an appropriate dimensionless variable, the dimensional partial differential equations of the flow model can be 
transformed into nondimensional ordinary differential equations. Solving nondimensional velocity and temperature in the model is 
made possible by the use of an analytical approach known as Adomian's decomposition (AD). Runge-Kutta techniques of order 
four are used to calculate numerical solutions to ensure the correctness of the analytical answer. On velocity and temperature, the 
impact of several dimensionless physical quantities embedded in the flow model is visualized graphically. The possibility of 
contracting or expanding a wall is considered. Finally, some final thoughts on this work. 
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1. Introduction 

To investigate the flow between convergent and divergent channels, Jeffery [1] and Hamel [2] were the first 
to do so. Jeffery-Hamel flow is the name given to the phenomenon after them. Two non-parallel walls are 
separated by an angle of 2alpha by a flow of viscous, incompressible fluid. The flow between the walls is 
caused by a source at the junction of the walls. Because of the wide variety of businesses that might benefit 
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from this flow, its importance cannot be overstated. Mechanical, civil, environmental, chemical, and 
aeronautical engineering are just a few examples. 

Research in magnetohydrodynamics, thermal radiations, and heat transfer is a major focus because of the 
numerous industrial and practical applications. An investigation of heat transfer and magnetohydrodynamic 
effects on nanofluids in converging/diverging channels by Mohyud-Din et al. [3] was published in 2015. With 
regard to converging/diverging channels, Khan et al. examined the influence of slip-on water-based nanofluid 
flow. To better understand the impact of thermal radiation on second-grade fluid flow, Hamed Ziaei Poor [5] 
conducted a study in 2014. They looked at the electrically conducting fluid between the convergent/divergent 
channels. They used the Differential Transform Method (DTM) to solve the flow model analytically and 
discovered excellent agreement between the analytical and numerical solutions. A second-grade fluid flow 
was studied by Hayat et al. [6] in the presence of convergent/divergent channels. Homotopy Analysis was 
used to solve the problem. [6]. 

It was only recently that U. Khan et al. [7] investigated the issue of viscous, incompressible fluid in 
convergent/divergent channels. Adomian's decomposition method and the effects of Soret, Dufour, and 
chemical reactions were examined for the solution of the flow model. Achieving accurate solutions in non-
linear flow models is a remarkable achievement. Many authors use series solutions to solve their problems. 
Many analytical techniques were used to accomplish this, including the Variational Iteration Method (VIM) 
[8, 9], the Variation of Parameters (VPM) [12, 13], the Adomian's decomposition method (ADM) [15, 16, 
17], the Homotopy Analysis Method (HAM) [19, 20, 21], the Differential Transform Method (DTM) [23, 24, 
25], and the Homotopy perturbation method (HPM) [26, 27]. 

Research into magnetohydrodynamics and thermal radiation effects on viscous incompressible fluid flow 
between nonparallel inclined plane walls has not been attempted, as evidenced by a literature review. 
Adomian's decomposition method is used to solve a specific problem in section 2, and the results are 
presented in section 3. Section 4 examines the effect of various physical factors on velocity, temperature, and 
the rate of heat transfer on the walls of shrinking and stretching convergent/divergent channels. Section 4 is 
divided into two parts. A few concluding remarks about the provided work appear in Section 5. 

2. Description of the problem 

Between two non-parallel plane walls, an electrically conducting fluid is being considered for flow. It is 
necessary to apply magnetic field ܤ perpendicular to the radial axis of the walls. 2ߙ is the angle at which 
these walls are positioned. At the point where two walls meet, there is either a source or a sink that causes the 
water to flow. Two-dimensional and one-directional flow is the norm. Flow is assumed to be symmetric 
around the central line, with ߠ = 0, as well. Consequently, velocity is reduced to only the u component and is 
a function of both ݎ and ߠ  (theta being the polar angle). As a result, the components of velocity are ࢂ =
,ݑ) 0,0). 
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In polar co-ordinates, the equations of motion and temperature in the presence of magnetic field and thermal 
radiation effects are. 
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The suitable boundary conditions for the under-consideration problem at the middle line (ߠ = 0) and at the 
walls (ߠ =  .are (ߙ
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Equations 2 to 6 include physical quantities such as the fluid temperature, kinetic viscosity and center-line 
velocity, as well as temperature at the walls, kinematic viscosity, stretching and shrinking, and specific heat 
under constant pressure. The letters ܶ, κ,, ௪ܶ , ν, ,ݏ ݑ  and ܿ, are used to signify these values, respectively. 

The dimensionless variables are defined as. 

(ߟ)ܨ = (ఏ)
௨
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ߟ     , = ఏ

ఈ
. (7) 

The following system of nonlinear ordinary differential equations for velocity and temperature with 
transformed boundary conditions can be obtained by removing the pressure terms from Equations (2) and (3) 
and then using the nondimensional variable described by Equation (1). 

ܨ ′′′ + ܨܨܴ݁ߙ2 ′ + (4 ܨଶߙ(ܽܪ− ′ = 0, (8) 

 

Figure 1: Geometry of the problem 
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(1 + ′′ߚ(ܴ݀ + ଶ(2ߙ2 + ߚ(ܨݎܲ + ா

ோ
ଶܨଶߙ4) + ܨ ′ଶ) − ′ߚܴ݀ߙ = 0, (9) 

(0)ܨ = 1, ܨ ′(0) = 0, (1)ܨ =  (10)  ,ܥ

(0)′ߚ = (1)ߚ     ,0 = 1,  (11) 

The nondimensional physical parameters embedded in Eqs. (8) and (9) are ܲݎ = ఘ௨
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 and these are Prandtl, Eckert, Reynold’s, Hartmann and Radiation numbers, 

respectively. Also, ܥ is the stretching/shrinking parameter and ܥ > 0 correspond to stretching and ܥ < 0 for 
shrinking of the channel walls. Another important parameter known as convergent/divergent parameter is ߙ. 
For divergent channel ߙ > 0, while, for convergent channel ߙ < 0. 

The expression for the rate of heat transfer (local Nusselt number) at the walls of the channel is. 

ݑଶܰݎߙ =  .(1)′ߚ−

3. Solution of the problem 

So, we focused on analytical solutions to the under-consideration problem because the exact solutions for 
nonlinear differential equations are so amazing to think about. A technique called as Adomian's 
decomposition approach is used for this purpose. Eqs. (8) and (9) can be written in the typical approach of 
Adomian's decomposition method as follows: 
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arrive with the following form; 
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where ܯ and ܰ are constants that can be calculated by remaining boundary conditions. By choosing ܨ = 1 +
ெఎమ

ଶ!
 and ߚ = ܰ , as an infant approximation for ܨ and ߚ  and then the recursive relation for higher order 

approximations of the solutions are in the following manner; 
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where ܣ,ܤ ܥ,  and ܦ (݇ = 0,1,2,3,4 … ) are Adomian’s polynomials for nonlinear terms ingrained in the 
flow model. These Adomian’s polynomials can be find out with the help of formula given below. 
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Analytical and numerical solutions for convergent and divergent channels are compared in Tables 1 and 2. As 
shown in the following Tables, Adomian's decomposition method and numerical solutions have better 
agreement with each other than previously thought. 

 

Table 1: Comparison between ADM and Numerical solutions for convergent channel 

 ߟ

↓ 

 (ߟ)ߚ (ߟ)ܨ

 ݈ܽܿ݅ݎ݁݉ݑܰ ܯܦܣ ݈ܽܿ݅ݎ݁݉ݑܰ ܯܦܣ

0.0 1.0000000 1.0000000 1.0157366 1.0157366 

0.1 0.9934230 0.9934230 1.0155976 1.0155976 

0.2 0.9736348 0.9736348 1.0151787 1.0151787 

0.3 0.9404642 0.9404642 1.0144744 1.0144744 

0.4 0.8936327 0.8936327 1.0134742 1.0134742 

0.5 0.8327629 0.8327629 1.0121632 1.0121632 

0.6 0.7573933 0.7573933 1.0105209 1.0105209 

0.7 0.6669974 0.6669974 1.0085206 1.0085206 

0.8 0.5610091 0.5610091 1.0061291 1.0061291 

0.9 0.4388560 0.4388560 1.0033053 1.0033053 

1.0 0.3000000 0.3000000 1.0000000 1.0000000 

 

Table 2: Comparison between ADM and Numerical solutions for divergent channel 

 ߟ

↓ 

 (ߟ)ߚ (ߟ)ܨ

 ݈ܽܿ݅ݎ݁݉ݑܰ ܯܦܣ ݈ܽܿ݅ݎ݁݉ݑܰ ܯܦܣ
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0.0 1.0000000 1.0000000 1.0160237 1.0160237 

0.1 0.9925577 0.9925577 1.0158844 1.0158844 

0.2 0.9702948 0.9702948 1.0154633 1.0154633 

0.3 0.9333994 0.9333994 1.0147520 1.0147520 

0.4 0.8821738 0.8821738 1.0137370 1.0137370 

0.5 0.8170180 0.8170180 1.0123999 1.0123999 

0.6 0.7384080 0.7384080 1.0107187 1.0107187 

0.7 0.6468686 0.6468686 1.0086677 1.0086677 

0.8 0.5429435 0.5429435 1.0062185 1.0062185 

0.9 0.4271612 0.4271612 1.0033402 1.0033402 

1.0 0.2999999 0.2999999 1.0000000 1.0000000 

 

4. Results and discussion 

Here, using graphical aid, we investigate the effects of various nondimensional physical parameters such as 
Reynold's Re, Hartmann ܽܪ,  Prandtl,ܲݎ, Eckert number ܿܧ , Radiation number ܴ݀ , converging/diverging 
parameter ߙ and stretching/shrinking parameter ܥ  on the non-dimensional velocity field (ߟ)ܨ, temperature 
field (ߟ)ߚ, and local Nusselt number (rate of heat transfer at the walls.) 

As depicted in Figures 2-9, the velocity field (ߟ)ܨ, behaves differently in shrinking and stretching channels. It 
can be seen from Figure 1 and Figure 2 that for shrinking and stretching channels, the velocity profile is flat at 
the central region of the channel, whereas for converging channels, (ߟ)ܨ, shows an increasing trend. The 
effects of altering alpha on a diverging channel are reversed when the channel shrinks or stretches. When a 
diverging channel is contracting, the decrease in velocity is slower than when a divergent channel is 
stretching. A diverging canal generates backflow in the area of its walls. Figures 4 and 5 show how the (ߟ)ܨ, 
changes when the Hartmann number changes. Ha has a similar effect on velocity profiles in both shrinking 
and stretching channels, as shown by this comparison. Changing Reynold's number has an effect on the 
velocity field (ߟ)ܨ, as shown in Figures 6 and 7. Variations in Reynold's number have the opposite effect on 
(ߟ)ܨ , for shrinking and stretching convergent/divergent channels, as can be shown from these results. 
Increasing the Reynold's number in a stretching channel causes a quick reduction in velocity. For shrinking 
and stretching divergent channels, however, Reynold's number exerts a nearly identical influence on (ߟ)ܨ. 

Figures 8 and 9 show the effects of C on velocity field (ߟ)ܨ , for convergent and divergent channels, 
respectively. Shrinkage (ܥ < 0) and stretching (ܥ > 0) have the opposite effect on the velocity field, as can 
be shown from these results. Compared to divergent channels, the velocity profile of a shrinking convergent 
channel degrades rapidly. Positive values of ܥ in Figure 9 show growing (ߟ)ܨ, behaviour. 
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Figure 2: Influience of ߙ on (ߟ)ܨ in 
shrinking channel 

 

Figure 3: Influience of ߙ on (ߟ)ܨ in 
stretching channel 

 

Figure 4: Influence of ܽܪ on (ߟ)ܨ in 
shrinking channel 

 

Figure 5: Influence of ܽܪ on (ߟ)ܨ in 
stretching channel 

 

Figure 6: Influence of ܴ݁ on (ߟ)ܨ in 
shrinking channel 

 

Figure 7: Influence of ܴ݁ on (ߟ)ܨ in 
stretching channel 
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Figure 8: Influence of ܥ on (ߟ)ܨ in 
shrinking channel 

 
Figure 9: Influence of ܥ on (ߟ)ܨ in 
stretching channel 

Figures 10-15 are shown to show how radiation number ܴ݀, Prandtl number ܲݎ Eckert number ܿܧ 
affect the temperature field (ߟ)ߚ. Convergent/divergent channels can shrink and expand depending on 
the temperature of the surrounding environment. 
 
Figures 10 and 11 show how the radiation number affects (ߟ)ߚ. When can be seen in these graphs, as 
the radiation number Rd increases, the temperature profile begins to decrease. Shrinkage and 
stretching convergent/divergent temperature profiles behave remarkably identically. Furthermore, the 
channel's temperature reaches its highest point in the center. There is a strong correlation between 
Prandtl number ܲݎ and (ߟ)ߚ as shown in Figures 12 and 13. These results show that the temperature 
field increases as the Prandtl number increases. When a channel shrinks, the temperature rises quickly; 
however, when a channel stretches, the temperature rise is much slower than in shrinking channels. 
The influence of Prandtl number on temperature diminishes as we travel away from the central line 
ߟ) = 0) toward the channel walls (ߟ = 1). A plot of varying Eckert numbers on a non-dimensional 
temperature (ߟ)ߚ is shown in Figures 14 and 15. Temperature rises as Eckert number grows in both 
figures. In comparison to stretching channels, the rate of increase is much slower for shrinking 
channels. Furthermore, the core portion of the channel's temperature rises relatively slowly when 
lengthening channels. 

 

Figure 10: Influence of ܴ݀ on (ߟ)ߚ in 
shrinking channel 

 

Figure 11: Influence of ܴ݀ on (ߟ)ߚ in 
stretching channel 
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Figure 12: Influence of ܲݎ on (ߟ)ߚ in 
shrinking channel 

 

Figure 13: Influence of ܲݎ on (ߟ)ߚ in 
stretching channel 

 

Figure 14: Influence of ܿܧ on (ߟ)ߚ in 
shrinking channel 

 

Figure 15: Influence of ܿܧ on (ߟ)ߚ in 
stretching channel 

The rate of heat transmission at the channel walls is strongly influenced by nondimensional physical 
characteristics. Figures 16-21 are plotted for this purpose. An illustration of how radiation number, Prandtl 
number, and Eckert number affect heat transfer rates at walls can be seen in these diagrams. Discussing the 
examples of convergent and divergent channels. 

Figures 16 and 17 show how the rate of heat transmission for convergent and divergent channels differs 
depending on the value of the radiation number. From these two diagrams, it can be shown that heat transfer 
rates decrease with increasing radiation number values. As contrast to the convergent channel, the rate of heat 
transmission in the divergent channel decreases faster. Figures 18 and 19 show the impact of altering the 
Eckert number on the Nusselt number. The growing behaviour in convergent and divergent channels may be 
seen in the Nusselt number, which is derived from this data. There is increased heat transmission at the 
channel walls for diverging channels. A heat transmission rate is shown in Figures 20 and 21 by comparing 
the Prandtl and Eckert figures. Figures 20 and 21 show that the rate of heat transfer is nearly identical for 
convergent and divergent channels. 
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Figure 16: Influence of ܴ݀ on −(1)′ߚ in 
convergent channel 

 

Figure 17: Influence of ܴ݀ on −(1)′ߚ in 
divergent channel 

 

Figure 18: Influence of ܿܧ on −(1)′ߚ in 
convergent channel 

 

Figure 19: Influence of ܿܧ on −(1)′ߚ in 
divergent channel 

 

Figure 20: Influence of ܿܧ and ܲݎ on −(1)′ߚ 
in convergent channel   

 

Figure 21: Influence of ܿܧ and ܲݎ on 
 in divergent channel (1)′ߚ−

 
5. Conclusions  

On the flow of viscous incompressible fluid between two nonparallel plane walls, the effects of magneto-
hydrodynamics and heat radiation are explored in this article. Flow between convergent and divergent 
channels is another name for this sort of flow, as is Jeffery-Hamel flow. Adomian's decomposition approach is 
used to calculate the flow model's solutions. Nondimensional physical characteristics have an impact on 
velocity, temperature, and heat transfer rates, and the following conclusions are drawn from this investigation. 
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1. The velocity field remains flat in the center of the channel for both shrinking and stretching 
channels when a converging/diverging parameter alpha is varied, however backflow occurs at 
the channel walls when the walls are stretched. 

2. In shrinking and stretching channels, differences in velocity profiles are observed for a wide 
range of Hartmann numbers. 

3. Variations in Reynold's number are observed in the velocity field reversals, although in a 
stretched channel these variations are more rapid than in a decreasing channel. 

4. When shrinking (ܥ > 0) or stretching (ܥ < 0), the velocity profile is affected in the opposite 
way by the C parameter. 

5. The temperature field reverses when Radiation and Prandtl numbers are varied. The 
temperature field rapidly decreases as the radiation number is elevated. 

6. When the Eckert number in the stretching channel is bigger, the temperature increases more 
slowly. 

7. Convergent and divergent channels both experiences decreased heat transfer at the walls due to 
differences in radiation number. 

8. In both convergent and divergent channels, an increase in the rate of heat transfer at the walls 
is observed for varying Eckert numbers. 

9. In the case of convergent and divergent channels, analytical and numerical results are in perfect 
harmony. 
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