

International Journal of Emerging Multidiciplinaries Mathematics

> Research Paper Journal Homepage: www.ijemd.com ISSN (print): 2790-1998

Inequalities for Riemann–Stieltjes integral

Mohammad W. Alomari

Department of Mathematics, Faculty of Science and Information Technology, Irbid National University, P.O. Box 2600, Irbid, P.C. 21110, Jordan.

Abstract

Two new inequalities for Riemann–Stieltjes integral are introduced for functions of bounded p-variation and Hölder continuous integrators.

Keywords: Riemann–Stieltjes integral, Bounded p–variation, Hölder continuous 2010 Mathematics Subject Classification: 26A16, 26A42, 26A45, 26D15

1. Introduction

If [a,b] is a compact interval, a set of points $P := \{x_0, x_1, \dots, x_n\}$, satisfying the inequalities

 $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$,

is called a partition of [a,b]. The interval $[x_{i-1},x_i]$ is called *i*-th subinterval of *P* and we write $\Delta x_i = x_i - x_{i-1}$, so that $\sum_{i=1}^{n} \Delta x_i = b - a$. The collection of all possible partitions of [a,b] will be denoted by $\mathscr{P}[a,b]$.

Definition 1.1. [3] Let f be defined on [a,b]. If $P := \{x_0, x_1, \dots, x_n\}$ is a partition of [a,b], write

$$\Delta f_i = f(x_i) - f(x_{i-1}),$$

for $i = 1, 2, \dots, n$. If there exists a positive number M such that $v_p(f) := \left(\sum_{i=1}^n |\Delta f_i|^p\right)^{\frac{1}{p}} \le M$, $(1 \le p < \infty)$ for all partition of [a,b], then f is said to be of bounded p-variation $v_p(f)$ on [a,b].

where v_1 is the ordinary class of functions of bounded variation and there is strict inclusion. Consequently, Jensen's inequality implies that $v_p(f) \subset v_q(f)$, for $1 \leq p < q < \infty$, i.e., the class of $v_p(f)$ is a proper subset of $v_q(f)$ whenever $1 \leq p < q < \infty$.

Let *f* be of bounded variation on [a, b], and let $\sum(P)$ denote the sum $\left(\sum_{i=1}^{n} |\Delta f_i|^p\right)^{\frac{1}{p}}$ corresponding to the partition *P* of [a, b]. The number

$$\bigvee_{a}^{b}(f;p) = \sup\left\{\sum(P): P \in \mathscr{P}[a,b]\right\}, \quad 1 \leq p < \infty$$

is called the total *p*-variation of f on the interval [a,b].

Email addresses: mwomath@gmail.com

We recall that a function $f: I \to \mathbb{R}$ is said to satisfy a Lipschitz condition of order α , $\alpha > 0$ if there exists a positive number *L* such that

$$|f(x) - f(c)| < L|x - c|^{\alpha}.$$
(1.1)

Moreover, if $0 < \alpha \le 1$, then *f* is said to satisfy a Hölder condition.

In 1924, Wiener [5], showed that $\operatorname{Lip}_{\frac{1}{p}}(f) \subset v_p(f)$, where $\operatorname{Lip}_{\frac{1}{p}}(f)$ is the class of functions satisfying the Lipschitz condition of order p. More preciously, if f has the α -Hölder property, then f has bounded p-variation with $p = \frac{1}{\alpha}$. A continuous function of bounded p-variation for some $1 \leq p < \infty$ need not have the α -Holder property. As pointed out in [4], the series

$$\sum_{k=1}^{\infty} \frac{\sin kt}{k \log k}, \quad 0 \le t \le 1,$$

converges uniformly to the sum g, which is absolutely continuous and, hence, has bounded p-variation for each $1 \le p < \infty$. However, this g satisfies no Holder property of order $\alpha > 0$, for more details the reader may refer to [2], Section 10.6.1 (2).

Theorem 1.2. ([3]) Let $p, \mathbf{v} : [a,b] \to \mathbb{R}$ such that p is a continuous function on [a,b] and \mathbf{v} of bounded variation, then $\int_a^b p(t) d\mathbf{v}(t)$ exits and the inequality

$$\left| \int_{a}^{b} p(t) d\mathbf{v}(t) \right| \leq \sup_{t \in [a,b]} |p(t)| \bigvee_{a}^{b} (\mathbf{v})$$
(1.2)

holds.

Theorem 1.3. ([4]) If $\bigvee_a^b(f;p)$ and $\bigvee_a^b(g;q) < \infty$ with $\frac{1}{p} + \frac{1}{q} > 1$, and f and g have no common discontinuities, then the Riemann–Stieltjes integral $\int_a^b f(t) dg(t)$ exists and

$$\left| \int_{a}^{b} f(t) dg(t) \right| \leq \left[1 + \zeta \left(\frac{1}{p} + \frac{1}{q} \right) \right] \cdot \left[|f(a)| + \bigvee_{a}^{b} (f;p) \right] \cdot \bigvee_{a}^{b} (g;q),$$
(1.3)

where, $\zeta(s) := \sum_{n=1}^{\infty} n^{-s}$ is the Riemann zeta function.

Therefore, we may deduce the following result:

Corollary 1.4. Let $f,g:[a,b] \to \mathbb{R}$ be two functions of bounded variation on [a,b], then the Riemann–Stieltjes integral $\int_a^b f(t) dg(t)$ exists and

$$\left| \int_{a}^{b} f(t) dg(t) \right| \leq \left[1 + \frac{\pi^{2}}{6} \right] \cdot \left[|f(a)| + \bigvee_{a}^{b} (f) \right] \cdot \bigvee_{a}^{b} (g), \qquad (1.4)$$

In special case, if f(a) = 0, then

$$\left| \int_{a}^{b} f(t) dg(t) \right| \leq \left[1 + \frac{\pi^{2}}{6} \right] \cdot \bigvee_{a}^{b} (f) \cdot \bigvee_{a}^{b} (g).$$

$$(1.5)$$

The aim of this paper, is to introduce two new inequalities regarding Riemann-Stieltjes integrals for functions of bounded *p*-variation and Hölder continuous integrators.

2. Two inequalities for Riemann–Stieltjes integrals

We begin with the following lemma due to L.C. Young:

Lemma 2.1. ([6]) If a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n are two ordered set of complex numbers, then the inequality

$$\sum_{k=1}^{n} |a_k b_k| \le \sum_{k=1}^{n} k^{-\left(\frac{1}{p} + \frac{1}{q}\right)} \left(\sum_{k=1}^{n} |a_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |b_k|^q\right)^{1/q},$$
(2.1)

valid for p, q > 0 *with* $\frac{1}{p} + \frac{1}{q} \ge 1$.

In particular, if $b_i = 1$ for all $i = 1, \dots, n$, then

$$\sum_{k=1}^{n} |a_k| \le n^{1/q} \sum_{k=1}^{n} k^{-\left(\frac{1}{p} + \frac{1}{q}\right)} \left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p}.$$
(2.2)

We begin with the following generalization of Theorem 1.2 to functions of bounded *p*-variations:

Theorem 2.2. Fix $1 \le p < \infty$. Let $f,g:[a,b] \to \mathbb{R}$ be such that f is a nonconstant continuous function on [a,b] and g is of bounded p-variation on [a,b]. Then the Riemann–Stieltjes integral $\int_a^b f(t) dg(t)$ exists and the inequality:

$$\left| \int_{a}^{b} f(t) dg(t) \right| \leq \sup_{t \in [a,b]} |f(t)| \cdot \bigvee_{a}^{b} (g;p),$$

$$(2.3)$$

holds.

Proof. The existence of $\int_a^b f(t) dg(t)$, follows trivially. To prove (2.3), assume p = 1. Let $\delta_n : a = x_0^{(n)} < x_1^{(n)} < \cdots < x_{n-1}^{(n)} < x_n^{(n)} = b$, is a sequence of divisions, with $v(\delta_n) \to 0$ as $n \to \infty$, where $v(\delta_n) := \max_{i \in \{0,1,\dots,n-1\}} \left(x_{i+1}^{(n)} - x_i^{(n)} \right)$ and $\xi_i^{(n)} \in \left[x_i^{(n)}, x_{i+1}^{(n)} \right]$. Then

$$\begin{split} \left| \int_{a}^{b} f(t) \, dg(t) \right| &\leq \left| \lim_{\nu(\delta_{n}) \to 0} \sum_{i=0}^{n-1} f\left(\xi_{i}^{(n)}\right) \left[g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right) \right] \right| \\ &\leq \lim_{\nu(\delta_{n}) \to 0} \sum_{i=0}^{n-1} \left| f\left(\xi_{i}^{(n)}\right) \right| \left| g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right) \right| \\ &= \sup_{t \in [a,b]} |f(t)| \cdot \sup_{\delta_{n}} \sum_{i=0}^{n-1} \left| g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right) \right| \\ &= \sup_{t \in [a,b]} |f(t)| \cdot \bigvee_{a}^{b} (g;1) \,. \end{split}$$

Now, assume p > 1. Since f(t) is a nonconstant function for all t in [a,b], then by applying the discrete Hölder inequality, we have

$$\begin{split} \left| \int_{a}^{b} f(t) dg(t) \right| &\leq \left| \lim_{\nu(\delta_{n}) \to 0} \sum_{i=0}^{n-1} f\left(\xi_{i}^{(n)}\right) \left[g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right) \right] \right| \\ &\leq \lim_{\nu(\delta_{n}) \to 0} \sum_{i=0}^{n-1} \left| f\left(\xi_{i}^{(n)}\right) \right|^{q} \right)^{\frac{1}{q}} \left(\sum_{i=0}^{n-1} \left| g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right) \right|^{p} \right)^{\frac{1}{p}} \\ &\leq \lim_{\nu(\delta_{n}) \to 0} \left(\sum_{i=0}^{n-1} \left| f\left(\xi_{i}^{(n)}\right) \right|^{q} \right)^{\frac{1}{q}} \left(\sum_{i=0}^{n-1} \left| g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right) \right|^{p} \right)^{\frac{1}{p}} \\ &\leq \sup_{t \in [a,b]} \left(|f(t)|^{q} \right)^{\frac{1}{q}} \cdot \sup_{\delta_{n}} \left(\sum_{i=0}^{n-1} \left| g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right) \right|^{p} \right)^{\frac{1}{p}} \\ &= \sup_{t \in [a,b]} |f(t)| \cdot \bigvee_{a}^{b} (g;p) \,, \end{split}$$

where p > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, which completes the proof.

So that we may deduce the following result:

Corollary 2.3. Let $1 \le p < \infty$. Let $f,g:[a,b] \to \mathbb{R}$ be such that f is continuous on [a,b] and g is $\frac{1}{p}$ -H-Hölder continuous on [a,b]. Then the Riemann-Stieltjes integral $\int_a^b f(t) dg(t)$ exists and we have the following inequality:

$$\left| \int_{a}^{b} f(t) dg(t) \right| \le H (b-a)^{1/p} \cdot \sup_{t \in [a,b]} |f(t)|.$$
(2.4)

Proof. If g has the α -Hölder property, then g has bounded p-variation with $p = 1/\alpha$. Moreover,

$$\bigvee_{a}^{b} (g;p) \leq H \left(b-a\right)^{1/p},$$

which gives the required result by (2.3).

We may refine the inequality (2.4), as follows:

Theorem 2.4. Let $1 \le p < \infty$. Let $f, g : [a,b] \to \mathbb{R}$ be such that is f is a nonconstant bounded function on [a,b], i.e., $||f||_{\infty} := \sup_{t \in [a,b]} |f(t)| < \infty$ exists, with $f \in L^1[a,b]$, and g is $\frac{1}{p}$ -H–Holder continuous on [a,b]. Then we have the following inequality:

$$\left| \int_{a}^{b} f(t) dg(t) \right| \le H \| f \|_{\infty}^{1 - \frac{1}{p}} \cdot \| f \|_{1}^{\frac{1}{p}}.$$
(2.5)

Provided that the Riemann-Stieltjes integral $\int_{a}^{b} f(t) dg(t)$ exists.

Proof. Assume $p \ge 1$. Let $\delta_n : a = x_0^{(n)} < x_1^{(n)} < \cdots < x_{n-1}^{(n)} < x_n^{(n)} = b$, is a sequence of divisions, with $v(\delta_n) \to 0$ as $n \to \infty$, where $v(\delta_n) := \max_{i \in \{0,1,\dots,n-1\}} \left(x_{i+1}^{(n)} - x_i^{(n)} \right)$ and $\xi_i^{(n)} \in \left[x_i^{(n)}, x_{i+1}^{(n)} \right]$. Since f is a nonconstant on [a, b], then we can apply the discrete power-mean inequality, as follows:

$$\begin{split} \left| \int_{a}^{b} f(t) dg(t) \right| &\leq \left| \lim_{\nu(\delta_{n}) \to 0} \sum_{i=0}^{n-1} f\left(\xi_{i}^{(n)}\right) \left[g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right) \right] \right| \\ &\leq \lim_{\nu(\delta_{n}) \to 0} \sum_{i=0}^{n-1} \left| f\left(\xi_{i}^{(n)}\right) \right| \left| g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right) \right| \\ &\leq \lim_{\nu(\delta_{n}) \to 0} \left(\sum_{i=0}^{n-1} \left| f\left(\xi_{i}^{(n)}\right) \right| \right)^{1-\frac{1}{p}} \left(\sum_{i=0}^{n-1} \left| f\left(\xi_{i}^{(n)}\right) \right| \left| g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right) \right|^{p} \right)^{\frac{1}{p}}, \end{split}$$

and since g is $\frac{1}{p}$ -Hölder continuous $p \ge 1$, then there exists H > 0 such that

$$\left|g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right)\right| \le H \left|x_{i+1}^{(n)} - x_{i}^{(n)}\right|^{1/p},$$

it follows that

$$\left|g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right)\right|^{p} \leq H^{p}\left|x_{i+1}^{(n)} - x_{i}^{(n)}\right|,$$

therefore, we have

$$\begin{split} \left| \int_{a}^{b} f(t) dg(t) \right| &\leq \lim_{v(\delta_{n}) \to 0} \left(\sum_{i=0}^{n-1} \left| f\left(\xi_{i}^{(n)}\right) \right| \right)^{1-\frac{1}{p}} \left(\sum_{i=0}^{n-1} \left| f\left(\xi_{i}^{(n)}\right) \right| \left| g\left(x_{i+1}^{(n)}\right) - g\left(x_{i}^{(n)}\right) \right|^{p} \right)^{\frac{1}{p}} \\ &\leq H \lim_{v(\delta_{n}) \to 0} \left(\sum_{i=0}^{n-1} \left| f\left(\xi_{i}^{(n)}\right) \right| \right)^{1-\frac{1}{p}} \left(\sum_{i=0}^{n-1} \left| f\left(\xi_{i}^{(n)}\right) \right| \left| x_{i+1}^{(n)} - x_{i}^{(n)} \right| \right)^{\frac{1}{p}} \\ &= H \left[\sup_{t \in [a,b]} \left| f(t) \right| \right]^{1-\frac{1}{p}} \cdot \left(\int_{a}^{b} \left| f(t) \right| dt \right)^{\frac{1}{p}} \\ &= H \left\| f \right\|_{\infty}^{1-\frac{1}{p}} \cdot \left\| f \right\|_{1}^{\frac{1}{p}} \end{split}$$

which completes the proof.

3. Proposed Problem

It is well-known that for a Riemann integrable function $p : [a,b] \to \mathbb{R}$ and *L*-Lipschitzian function $v : [a,b] \to \mathbb{R}$, one has the inequality

$$\left|\int_{a}^{b} p(t) d\mathbf{v}(t)\right| \le L \int_{a}^{b} |p(t)| dt.$$
(3.1)

Next we propose a generalization of (3.1), as follows:

Conjecture 3.1. If $w : [a,b] \to \mathbb{R}$ belongs to $L^p[a,b]$, $1 \le p,q < \infty$ and $v : [a,b] \to \mathbb{R}$ is Hölder continuous mapping of order $\frac{1}{q}$, where H > 0 is given with $\frac{1}{p} + \frac{1}{q} \ge 1$. Then,

- 1. $\int_{a}^{b} w(t) dv(t)$ exists.
- 2. The inequality

$$\left| \int_{a}^{b} w(t) d\mathbf{v}(t) \right| \le H \cdot C(p,q) \cdot \|w\|_{p}, \qquad (3.2)$$

holds, for all $1 \le p < \infty$, where, $||w||_p = \left(\int_a^b |w(t)|^p dt\right)^{1/p}$, $p \ge 1$ and C(p,q) is a constant of p,q.

3. What is the best possible constant C(p,q) would satisfies the inequality?.

Acknowledgement

Author would like to thank the reviewers for their useful comments and suggestions.

Competing Interests

The author declare no competing interests.

References

- [1] Alomari, M.W. Two-point Ostrowski's inequality, Results in Mathematics, 72 (3), 1499–1523 (2017).
- [2] Edwards, R.E. Fourier series: A Modern Introduction, vol. 1, 2ed., Springer, (1979).
- [3] Natanson, I.P. Theory of functions of a real variable, Frederick Ungar Publishing Company, New York 1965.
- [4] Norvaiša, R. Rough functions: *p*-variation, calculus, and index estimation, *Lithuanian Mathematical Journal*, **46** (1) 102–128 (2006).
- [5] Wiener, N. The quadratic variation of a function and its Fourier coefficients. Mass. J. Math. **3**, 72–94 (1924).
- [6] Young, L.C. An inequality of the Holder type, connected with Stieltjes integration, Acta Math. 67 (1): 251–282 (1936).