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Abstract

Two new inequalities for Riemann–Stieltjes integral are introduced for functions of bounded p-variation and Hölder continuous integrators.
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2010 Mathematics Subject Classification: 26A16, 26A42, 26A45, 26D15

1. Introduction

If [a,b] is a compact interval , a set of points P := {x0,x1, · · · ,xn}, satisfying the inequalities

a = x0 < x1 < · · ·< xn−1 < xn = b,

is called a partition of [a,b]. The interval [xi−1,xi] is called i-th subinterval of P and we write ∆xi =
xi − xi−1, so that ∑

n
i=1 ∆xi = b−a. The collection of all possible partitions of [a,b] will be denoted by

P[a,b].

Definition 1.1. [3] Let f be defined on [a,b]. If P := {x0,x1, · · · ,xn} is a partition of [a,b], write

∆ fi = f (xi)− f (xi−1) ,

for i = 1,2, · · · ,n. If there exists a positive number M such that νp( f ) :=
(

n
∑

i=1
|∆ fi|p

) 1
p

≤ M, (1 ≤ p < ∞)

for all partition of [a,b], then f is said to be of bounded p–variation νp( f ) on [a,b].

where ν1 is the ordinary class of functions of bounded variation and there is strict inclusion. Consequently,
Jensen’s inequality implies that νp( f ) ⊂ νq( f ), for 1 ≤ p < q < ∞, i.e., the class of νp( f ) is a proper
subset of νq( f ) whenever 1 ≤ p < q < ∞.

Let f be of bounded variation on [a,b], and let ∑(P) denote the sum
(

n
∑

i=1
|∆ fi|p

) 1
p

corresponding to the

partition P of [a,b]. The number

b∨
a
( f ; p) = sup

{
∑(P) : P ∈ P[a,b]

}
, 1 ≤ p < ∞

is called the total p–variation of f on the interval [a,b].
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We recall that a function f : I → R is said to satisfy a Lipschitz condition of order α , α > 0 if there exists
a positive number L such that

| f (x)− f (c)|< L |x− c|α . (1.1)
Moreover, if 0 < α ≤ 1, then f is said to satisfy a Hölder condition.
In 1924, Wiener [5], showed that Lip 1

p
( f )⊂ νp( f ), where Lip 1

p
( f ) is the class of functions satisfying

the Lipschitz condition of order p. More preciously, if f has the α-Hölder property, then f has bounded
p-variation with p = 1

α
. A continuous function of bounded p-variation for some 1 ≤ p < ∞ need not have

the α-Holder property. As pointed out in [4], the series
∞

∑
k=1

sinkt
k logk

, 0 ≤ t ≤ 1,

converges uniformly to the sum g, which is absolutely continuous and, hence, has bounded p-variation for
each 1 ≤ p < ∞. However, this g satisfies no Holder property of order α > 0, for more details the reader
may refer to [2], Section 10.6.1 (2).
Theorem 1.2. ([3]) Let p,ν : [a,b]→ R such that p is a continuous function on [a,b] and ν of bounded
variation, then

∫ b
a p(t)dν (t) exits and the inequality∣∣∣∣∫ b

a
p(t)dν (t)

∣∣∣∣≤ sup
t∈[a,b]

|p(t)|
b∨
a
(ν) (1.2)

holds.
Theorem 1.3. ([4]) If

∨b
a ( f ; p) and

∨b
a (g;q) < ∞ with 1

p +
1
q > 1, and f and g have no common

discontinuities, then the Riemann–Stieltjes integral
∫ b

a f (t)dg(t) exists and∣∣∣∣∫ b

a
f (t)dg(t)

∣∣∣∣≤ [1+ζ

(
1
p
+

1
q

)]
·

[
| f (a)|+

b∨
a
( f ; p)

]
·

b∨
a
(g;q) , (1.3)

where, ζ (s) :=
∞

∑
n=1

n−s is the Riemann zeta function.

Therefore, we may deduce the following result:
Corollary 1.4. Let f ,g : [a,b]→ R be two functions of bounded variation on [a,b], then the Riemann–
Stieltjes integral

∫ b
a f (t)dg(t) exists and∣∣∣∣∫ b

a
f (t)dg(t)

∣∣∣∣≤ [1+
π2

6

]
·

[
| f (a)|+

b∨
a
( f )

]
·

b∨
a
(g) , (1.4)

In special case, if f (a) = 0, then∣∣∣∣∫ b

a
f (t)dg(t)

∣∣∣∣≤ [1+
π2

6

]
·

b∨
a
( f ) ·

b∨
a
(g) . (1.5)

The aim of this paper, is to introduce two new inequalities regarding Riemann-Stieltjes integrals for
functions of bounded p-variation and Hölder continuous integrators.

2. Two inequalities for Riemann–Stieltjes integrals

We begin with the following lemma due to L.C. Young:
Lemma 2.1. ([6]) If a1,a2, · · · ,an and b1,b2, · · · ,bn are two ordered set of complex numbers, then the
inequality

n

∑
k=1

|akbk| ≤
n

∑
k=1

k−
(

1
p+

1
q

)( n

∑
k=1

|ak|p
)1/p( n

∑
k=1

|bk|q
)1/q

, (2.1)

valid for p,q > 0 with 1
p +

1
q ≥ 1.
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In particular, if bi = 1 for all i = 1, · · · ,n, then

n

∑
k=1

|ak| ≤ n1/q
n

∑
k=1

k−
(

1
p+

1
q

)( n

∑
k=1

|ak|p
)1/p

. (2.2)

We begin with the following generalization of Theorem 1.2 to functions of bounded p-variations:

Theorem 2.2. Fix 1 ≤ p < ∞. Let f ,g : [a,b]→R be such that f is a nonconstant continuous function on
[a,b] and g is of bounded p–variation on [a,b]. Then the Riemann–Stieltjes integral

∫ b
a f (t)dg(t) exists

and the inequality:∣∣∣∣∫ b

a
f (t)dg(t)

∣∣∣∣≤ sup
t∈[a,b]

| f (t)| ·
b∨
a
(g; p) , (2.3)

holds.

Proof. The existence of
∫ b

a f (t)dg(t), follows trivially. To prove (2.3), assume p = 1. Let δn : a = x(n)0 <

x(n)1 < · · · < x(n)n−1 < x(n)n = b, is a sequence of divisions, with ν (δn) → 0 as n → ∞, where ν (δn) :=

max
i∈{0,1...,n−1}

(
x(n)i+1 − x(n)i

)
and ξ

(n)
i ∈

[
x(n)i ,x(n)i+1

]
. Then

∣∣∣∣∫ b

a
f (t)dg(t)

∣∣∣∣≤
∣∣∣∣∣ lim
ν(δn)→0

n−1

∑
i=0

f
(

ξ
(n)
i

)[
g
(

x(n)i+1

)
−g
(

x(n)i

)]∣∣∣∣∣
≤ lim

ν(δn)→0

n−1

∑
i=0

∣∣∣ f (ξ
(n)
i

)∣∣∣ ∣∣∣g(x(n)i+1

)
−g
(

x(n)i

)∣∣∣
= sup

t∈[a,b]
| f (t)| · sup

δn

n−1

∑
i=0

∣∣∣g(x(n)i+1

)
−g
(

x(n)i

)∣∣∣
= sup

t∈[a,b]
| f (t)| ·

b∨
a
(g;1) .

Now, assume p > 1. Since f (t) is a nonconstant function for all t in [a,b], then by applying the discrete
Hölder inequality, we have∣∣∣∣∫ b

a
f (t)dg(t)

∣∣∣∣≤
∣∣∣∣∣ lim
ν(δn)→0

n−1

∑
i=0

f
(

ξ
(n)
i

)[
g
(

x(n)i+1

)
−g
(

x(n)i

)]∣∣∣∣∣
≤ lim

ν(δn)→0

n−1

∑
i=0

∣∣∣ f (ξ
(n)
i

)∣∣∣ ∣∣∣g(x(n)i+1

)
−g
(

x(n)i

)∣∣∣
≤ lim

ν(δn)→0

(
n−1

∑
i=0

∣∣∣ f (ξ
(n)
i

)∣∣∣q)
1
q
(

n−1

∑
i=0

∣∣∣g(x(n)i+1

)
−g
(

x(n)i

)∣∣∣p)
1
p

≤ sup
t∈[a,b]

(| f (t)|q)
1
q · sup

δn

(
n−1

∑
i=0

∣∣∣g(x(n)i+1

)
−g
(

x(n)i

)∣∣∣p)
1
p

= sup
t∈[a,b]

| f (t)| ·
b∨
a
(g; p) ,

where p > 1 with 1
p +

1
q = 1, which completes the proof.

So that we may deduce the following result:
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Corollary 2.3. Let 1 ≤ p < ∞. Let f ,g : [a,b] → R be such that f is continuous on [a,b] and g is
1
p–H–Hölder continuous on [a,b]. Then the Riemann-Stieltjes integral

∫ b
a f (t)dg(t) exists and we have

the following inequality:∣∣∣∣∫ b

a
f (t)dg(t)

∣∣∣∣≤ H (b−a)1/p · sup
t∈[a,b]

| f (t)| . (2.4)

Proof. If g has the α-Hölder property, then g has bounded p-variation with p = 1/α . Moreover,

b∨
a
(g; p)≤ H (b−a)1/p ,

which gives the required result by (2.3).

We may refine the inequality (2.4), as follows:

Theorem 2.4. Let 1 ≤ p < ∞. Let f ,g : [a,b]→R be such that is f is a nonconstant bounded function on
[a,b], i.e., ∥ f∥

∞
:= sup

t∈[a,b]
| f (t)|< ∞ exists, with f ∈ L1[a,b], and g is 1

p-H–Holder continuous on [a,b].

Then we have the following inequality:∣∣∣∣∫ b

a
f (t)dg(t)

∣∣∣∣≤ H ∥ f∥
1− 1

p
∞ · ∥ f∥

1
p
1 . (2.5)

Provided that the Riemann-Stieltjes integral
∫ b

a f (t)dg(t) exists.

Proof. Assume p ≥ 1. Let δn : a = x(n)0 < x(n)1 < · · ·< x(n)n−1 < x(n)n = b, is a sequence of divisions, with

ν (δn) → 0 as n → ∞, where ν (δn) := max
i∈{0,1...,n−1}

(
x(n)i+1 − x(n)i

)
and ξ

(n)
i ∈

[
x(n)i ,x(n)i+1

]
. Since f is a

nonconstant on [a,b], then we can apply the discrete power-mean inequality, as follows:

∣∣∣∣∫ b

a
f (t)dg(t)

∣∣∣∣≤
∣∣∣∣∣ lim
ν(δn)→0

n−1

∑
i=0

f
(

ξ
(n)
i

)[
g
(

x(n)i+1

)
−g
(

x(n)i

)]∣∣∣∣∣
≤ lim

ν(δn)→0

n−1

∑
i=0

∣∣∣ f (ξ
(n)
i

)∣∣∣ ∣∣∣g(x(n)i+1

)
−g
(

x(n)i

)∣∣∣
≤ lim

ν(δn)→0

(
n−1

∑
i=0

∣∣∣ f (ξ
(n)
i

)∣∣∣)1− 1
p
(

n−1

∑
i=0

∣∣∣ f (ξ
(n)
i

)∣∣∣ ∣∣∣g(x(n)i+1

)
−g
(

x(n)i

)∣∣∣p)
1
p
,

and since g is 1
p–Hölder continuous p ≥ 1, then there exists H > 0 such that

∣∣∣g(x(n)i+1

)
−g
(

x(n)i

)∣∣∣≤ H
∣∣∣x(n)i+1 − x(n)i

∣∣∣1/p
,

it follows that∣∣∣g(x(n)i+1

)
−g
(

x(n)i

)∣∣∣p ≤ H p
∣∣∣x(n)i+1 − x(n)i

∣∣∣ ,
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therefore, we have∣∣∣∣∫ b

a
f (t)dg(t)

∣∣∣∣≤ lim
ν(δn)→0

(
n−1

∑
i=0

∣∣∣ f (ξ
(n)
i

)∣∣∣)1− 1
p
(

n−1

∑
i=0

∣∣∣ f (ξ
(n)
i

)∣∣∣ ∣∣∣g(x(n)i+1

)
−g
(

x(n)i

)∣∣∣p)
1
p

≤ H lim
ν(δn)→0

(
n−1

∑
i=0

∣∣∣ f (ξ
(n)
i

)∣∣∣)1− 1
p
(

n−1

∑
i=0

∣∣∣ f (ξ
(n)
i

)∣∣∣ ∣∣∣x(n)i+1 − x(n)i

∣∣∣)
1
p

= H

[
sup

t∈[a,b]
| f (t)|

]1− 1
p
·
(∫ b

a
| f (t)|dt

) 1
p

= H ∥ f∥
1− 1

p
∞ · ∥ f∥

1
p
1

which completes the proof.

3. Proposed Problem

It is well-known that for a Riemann integrable function p : [a,b] → R and L–Lipschitzian function
ν : [a,b]→ R, one has the inequality∣∣∣∣∫ b

a
p(t)dν (t)

∣∣∣∣≤ L
∫ b

a
|p(t)|dt. (3.1)

Next we propose a generalization of (3.1), as follows:
Conjecture 3.1. If w : [a,b]→R belongs to Lp[a,b], 1 ≤ p,q < ∞ and ν : [a,b]→R is Hölder continuous
mapping of order 1

q , where H > 0 is given with 1
p +

1
q ≥ 1. Then,

1.
∫ b

a w(t)dν (t) exists.

2. The inequality∣∣∣∣∫ b

a
w(t)dν (t)

∣∣∣∣≤ H ·C (p,q) · ∥w∥p , (3.2)

holds, for all 1 ≤ p < ∞, where, ∥w∥p =
(∫ b

a |w(t)|p dt
)1/p

, p ≥ 1 and C (p,q) is a constant of p,q.

3. What is the best possible constant C (p,q) would satisfies the inequality?.
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