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 Abstract 
 
The unsteady, incompressible electroviscous fluid flow has been investigated with thermal energy transmission across two parallel 
plates. The upper plate is in motion, while the lower one is stationary. The flow is governed by the Navier-Stokes equations, which 
are combined with the Maxwell equation. The system of nonlinear PDEs is simplified to a system of ODEs along with their boundary 
conditions using Von-Karman's transformation. For the problem's analytic solution, the homotopy analysis method (HAM) has been 
used, and the result is compared to the Runge Kutta method of order four and latest computational technique parametric continuation 
method (PCM) to determine the validity of the scheme. It has been noted that the outcome is reflected with the best settlement. 
Interest physical constraints are graphically illustrated and briefly discussed in relation to velocity, temperature, magnetic strength 
profile, skin friction, and Nusselt numbers. The axial velocity of the fluid reduces by the action of Reynold numbers R1. The magnetic 
profile intensity is reduced as the Batchelor number rises, while the magnetic strength is boosted as the magnetic Reynolds number 
R3 increases. 

 
Keywords: Variable magnetic field; Maxwell equation; Reynolds number; HAM; Batchelor number; RK4. 

 

Nomenclature 
Greek Symbols 

  Thermal diffusivity 

  Thermal expansion coefficient 

0B  Magnetic strength 

  Scaled boundary layer coordinate 
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  Dynamic viscosity 

2  Magnetic permeability 





  Kinematic viscosity 

  Density 

K thermal conductivity 

cp  Heat capacity 

  Fluid electric conductivity 

0  Free surface permeability 

V  Fluid viscosity 

0T  constant temperature 

cpPr
K


  
Prandtl number 

2

1
HR


  
Reynold number 

2

2 2
HR 


  
Reynold number based on flow speed 

0
3

MR
R 

  Magnetic Reynold number  

2Bt    Batchelor number 

 

 

1. Introduction 

The association of fluid flow with a magnetic effect is a well-known area of fluid dynamics, which is known as 
magnetohydrodynamics (MHD). Such flow is usually used in bearings, food production and cooling towers, 
electrical devices, chemical, and mechanical operations, fog forming and dispersion, and crop protection [1]. 
Stefan [2] was the first to look at squeezing flow for lubrication in a device. Mehmood et al. [3] investigated 
squeezed flow with energy transmission across an impermeable wall. Mustafa et al. [4] reported heat transition 
in a squeezed viscous flow across two plates. Squeezing conducting flow across pair of plates is scrutinized by 
Hauck et al. [5]. Bhatti et al. [6] used a Darcy medium for the simulation to investigate the heat distribution of 
conducting flow across a parallel channel. The comparison between DTM and numerical methods suggests that 
the DTM approach for solving nonlinear differential equations is very flexible and reliable. Ikram et al. [7] 
reported a fractional model for the free convective Brinkman form nanofluid that retained hybrid nanoparticles 
in place across bounded parallel plates. The impact of a magnetic force on water-based Fe2O3 and 
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CNTs nanoliquids across a circular sheet is simulated by Gul et al. [8]. MWCNTs have a larger effect on heat 
flow and velocity profile, according to the findings. Alhowaity et al. [9] used computational methods to  
 
investigate the behavior of a hybrid nanofluid flow over a moving sheet. Bilal et al. [10] reported the 
characteristics of electroviscous trihybrid nanoliquid flow across compressing parallel infinite sheets. It was 
discovered that the charge transport rate increases when the Lewis number and activation energy are increases. 
Algehyne et al. [11] used PCM approach to study the hydromagnetic flow of a particular kind of water-based 
ferrofluid, which included motile microbes and nano particulates, through a permeable erect mobile substrate. 

 
In both Newtonian and Non-Newtonian fluid flow problems, the MHD principle is crucial. MHD has a variety 
of uses and speeds, including flow meters, magnetic drug-controlled sensors, blood flow tests in astrophysics, 
nuclear reactors, and pumps, among others [12-15]. Helmy [16] involved a standard perturbation approach to 
finding the solution for convective MHD flow past over a plate. A three-dimensional solution of time-
dependent hybrid nanoliquid flow with MHD and heat transport features induced by the upward/downward 
movement of a wavy disc has been investigated by Ahmadian et al. [17]. As compared to a flat surface, the wavy 
surface facilitates heat transfer by up to 15%. Rashidi et al. [18] calculated the MHD fluid flow in terms of 
bivariate function using the RK4 approach and the Shooting technique. By taking the Riga plate Lv et al. [19] 
described the nanoliquid flow in order to improve the heat transmits power for research and industrial 
applications. Tassaddiq et al. [20] Explored nanofluid flow over an infinite surface. To further analyze the fine 
point of nanofluid flow, they added the effect of the magnetic field. Sharma and Sood et al. [21] Addressed the 
consequences of double stratifications and magnetic fields on the convective flow of Jeffrey nanoliquid. Shuaib 
et al. [22] and Hayat et al. [23] documented the slip flow with convective heat transition and variable magnetic 
impact. The discoveries show that the MHD has a momentous impact on the fluid flow's velocity and energy 
transmission. Khashi'ie et al. [24] investigated the thermal properties and flow behavior of a Cu-Al2O3/water 
nanoliquid in a 2D system with a moving plate using MHD unsteady isolated stagnation point flow. Ali et al. [25] 
reported the effects of energy transference on the movement of a Jeffery nanofluid with submerged nanomaterials 
in the context of an applied magnetics flux across a nonlinear stretchy surface, under the upshots of Brownian 
and thermal radiation. 

 
Viscous dissipation has huge beneficial uses in different fields such as in fluid mechanics, medicine, engineering, 
electrochemistry, and biological physics. The heat transmission together with the dissipation of viscosity has 
received significant attention from researchers [26-28]. A comprehensive note regarding the impact of viscous 
dissipation on a fluid flow is firstly presented by Gehart et al. [29] in 1969. The authors used the technique of 
perturbation to gain the solution of governing equations. Ndolene [30] investigated Stokes's 1st together with the 
consequences of dissipation. For exact expressions of velocity and temperature profile, he applied the 
mathematical tools of the Laplace and Fourier transform techniques. Numerical examination of the hybrid 
nanofluid flow over a slender stretching surface discussed in [31]. The authors assumed the viscous dissipation 
in their accounts. He used relative similarity variables to make their governing PDEs to the ordinary differential 
equations. They highlighted in their conclusion that a larger Eckert number rise the temperature field. Despite all 
the mentioned significances, the term viscous dissipation is ignored by many researchers during their research 
work [32, 33]. Keeping in view the importance of viscous dissipation, we considered viscous dissipation flow 
together with the influence of the Maxwell equation.  

 
For the solution of PDEs and ODEs, two analytical methods (Asymptotic and Perturbation) were traditionally 
used. Which are commonly used in finance, engineering, and science for the analytic solution of various 
problems, but both asymptotic and perturbation techniques are based on large/small parameters. Which are only 
true for nonlinear equations with weak coefficients. In 1992, Liao [34] published a technique for analytical 
approximation, called the Homotopy Analysis approach, which is very useful for the solution of nonlinear PDEs, 
because it does not rely on large/small parameters. Liao [35] has explained the HAM strategy for solving 
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nonlinear ODEs. Bilal et al. [36] used the Homotopy analysis approach to analyze the Darcy convective flow of 
the nanoliquid into an inclined expanding cylinder. Gul et al. [37] evaluated the energy propagation inside the 
space between disc and cone across hybrid nanoliquid. They investigated four separate cases of flow between 
cone and disc using the HAM technique. Gul et al. [38] analyzed the fluid flow over a horizontally traveling thin 
needle using the HAM approach. The thermal dynamics and fluid velocity are thought to be highly influenced by 
the needle's composition, including its size and form. 

 
In the field of hydrodynamics, the magnetic force has numerous uses, particularly in the electrically conductive 
fluid. There are several applications for compressing flow between two plates. We expand the concept of Rehan 
et al. [39] in light of the uses of conducting squeezed flow that have already been outlined in the preceding 
paragraphs. They looked into incompressible fluid flow across a rotating disc in a steady state. The squeezing 
flow of viscous fluid with heat transition under magnetic effects has been investigated using the known 
mathematical model. The next part contains the problem's formulation and discussion. 

 
Figure 1: Fluid flow between two plates. 

 
2.     Mathematical Formulation 
We considered the fully developed, axisymmetric, pressure-driven time-dependent flow in a cartesian coordinate 
system across two plates. With velocity U=0, the lower plate is at rest, while U(h) = Uw is the stretching velocity 
of the upper plate. The gap between the plates is h. Figure 1 depicts the flow geometry. Both x-axis and y-axis 
are subjected to a variable magnetic field B0. Temperature T0 is maintained on the lower layer and upper plateT  

The Lorentz force J B
 

is applied to the equations for nonconducting plates. The continuity equation, energy, 
and Maxwell equation, as well as their boundary conditions, are modeled as follows [39, 40]: 

0x yU V   (1) 

   
2

1
t x Y x xx yy y xU UU VU P U U ByBx ByBy


        (2) 

   
2

1
t x Y y xx yy x yV UV VV P V V BxBy BxBx


        (3) 

( )t x y xx yy
p

KT UT VT T T
C

     
(4) 
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2

1 ( )t y y y y xx yyBx UBy ByU VBx BxV Bx Bx

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(5) 

2

1 ( )t x x x x xx yyBy UBy ByU VBx BxV By By


      
 

(6) 

The boundary conditions are: 

0
0

0

( ) 0,  ( ) 0,   ( ) ,   ( ) 0,  ( )   at  0,  
(1 )

( ) ,  ( ) ,   ( ) 0,   0,  ( )   at 
1 11

MU y V z T y T Bx y By y y
t

x t MU y V y T y Bx By y y h
t tt


 
 
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


     

 

 

     
(7) 

Here, 2, ,K    illustrate the thermal diffusion ratio, magnetic permeability, and density respectively, 
while u and v are the velocity component. 
The following mechanism has been used to convert the PDE scheme into an ODE system [40]: 

0

0

0
1
2

'( ), ( ), ( ) , '( ),
(1 ) 2 (1 )(1 )

( ), .
(1 ) (1 )

xMT Tx Hu f v f Bx m
t T T H tt

M yBy h
t H t
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 

 
 





        

 

  

 

           
(8) 

Using Eq. (8) in Eqs. (1)-(4), the following ODE scheme is formed (7): 

3 1
1 1 1 1

3 1 3 1

''''( ) '''( ) 2 ''( ) 3 '( ) ''( ) ( ) '''( ) '( ) ''( )
2

( ) ''( ) '( ) '( ),
2 2

R Rf R f R f R f f R f f m m

R R R Rh m m h

         

   

    

 
 

(9) 

2 2''( ) '( ) 2 Pr ( ) '( ),PrR R f         (10) 

2 2
2

1 1 1 1
2
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2 4 2'''( ) ''( ) '( ) '( ) '( ) 2 ''( ) ( )

4 2'( ) ''( ) '( ) '( ),

R R Bt Btm Btm Btm f h f h
R R R R

R Bt R Btf m f m
R R

       

   
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(11) 

2
2

2 2 2
1

2''( ) '( ) ( ) 2 ( ) '( ) ( ) '( ).R Bth R Bth R Bth R Bth f f m
R

            
(12) 

The transformed conditions are: 
(0) 0, '(0) 0, (0) 1, '(0) 0, (0) 1,
(1) 1, '(1) 1, (1) 0, '(1) 0, (1) 0

f f m h
f f m h




     
     

 
(13) 

 
3.      HAM Solution 
 
To solve equations (9)-(12) and (13), the Homotopy Analysis Method has been employed. Liao is the one that 
presented HAM [34, 35]. 
The initial guesses for velocity, temperature and magnetic fields are:  
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(28) 
The linear operators , , , ,f m hand    are expressed as 

4 2 3 2

4 2 3 2, , , .f m h
d f d d m d h
d d d d


   

                                       

(29) 
The expend form of the , , , , are obtained by Taylor’s Series expansionf m h   
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Now 
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(32) 
The system can be written as 
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4.      Error Analysis 
We performed the first error analysis to define the problem to ensure that our results are accurate up to the lowest 
residual error scale. Until evaluating and providing physical forecasts, we analyze an error to determine the 
accuracy of the proposed method. For this purpose, Tables [1, 2] and Figure 2 are drawn. 

 
Figure 2: Residual error for velocity, magnetic strength and thermal energy profile. 

 
Table 1: Optimal convergence for the different order of approximation. 

Order of approximation  hf  h  hh  hm t
m  

0    0   0 0   0 1.20563 x100 

1 -0.600601 -0.4 -0.882872 -0.5 3.96396 x10-3 

2 -0.849895 -0.283307 -0.724752 -0.286707 2.41117 x10-5 

3 -0.45879 -0.509151 -0.140321 -0.219345 4.95754 x10-4 

4 -0.358388 -0.172129 -0.652075 -0.174164 5.02034 x10-5 
 
Table 2: Individual averaged squared residual errors. 

M f
m  m

  h
m  m

m  
1 2.9843 ×10-3 9.76043×10-3 5.33289×10-4 1.86872 ×10-6 
3 4.09773 ×10-5 6.7172 ×10-5 9.57857 ×10-6 6.28919 ×10-5 
5 5.92848 ×10-6 1.20581×10-6 4.66723 ×10-6 9.28047 ×10-6 
7 2.19039 ×10-6 1.53567 ×10-7 1.92271 ×10-6 2.72748 ×10-6 
9 7.54318 ×10-7 4.51081 ×10-8 9.29069 ×10-7 1.11728 ×10-6 
11 2.9164 ×10-7 1.82423×10-8 5.17961 ×10-7 5.23161 ×10-7 
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13 1.28146 ×10-7 8.80226×10-9 3.13431×10-7 2.74055 ×10-7 
15 6.1026×10-8 4.83813×10-9 2.02176 ×10-7 1.5801 ×10-7 
17 3.14437 ×10-8 2.94572 ×10-9 1.3766×10-7 9.8419 ×10-8 
19 1.75654 ×10-8 1.93471 ×10-9 9.79619×10-8 6.54089 ×10-8 
21 1.06001 ×10-8 1.34245 ×10-9 7.22891×10-8 4.59022 ×10-8 
23 6.87338 ×10-9 9.69208 ×10-10 5.49757×10-8 3.36943 ×10-8 
25 4.75238 ×10-9 7.19818 ×10-10 4.28704×10-8 2.56594 ×10-8 
27 3.47101 ×10-9 5.4693 ×10-10 3.40887×10-8 2.01325 ×10-8 
29 2.65187 ×10-9 4.14909 ×10-10 2.75144×10-8 1.618 ×10-8 
30 2.35209 ×10-9 3.48062 ×10-10 2.49138×10-8 1.46085 ×10-8 

 
Table 1 represents the parameters ( , , , ,f h mh h h h ) optimal convergence for the different order of 
approximation. Table 2 revealed the Individual averaged squared residual errors. From, Figure 2 it can be 
shown that as the order of approximation for different physical parameter values rises, the total average 
square errors and average square residual errors decrease. 
 

5.      Analysis and Discussion 
 
By using HAM, the system of nonlinear Eqs. (9-12) and the boundary state Eq. (13) has been solved. The Runge 
Kutta of order four procedures is used to validate the numerical results. The flow dynamics are revealed in Figure 
1. 
Figure 3(a) shows the effects of Reynolds number R1 on velocity in the axial direction  f  . The increment in 
Reynolds number reduces the kinematic viscosity of the fluid, which causes the inclination of the axial velocity. 
Fig. 3(b) elaborates the upshots of the magnetic Reynolds number versus the axial velocity  f  . It can be 
perceived that dormancy of R3 reduces the induction influence on fluid flow, as a result, the axial velocity 
increase. 
Fig. 3(c) reveals that the radial velocity of a fluid increases as the Reynolds number raises, but at 0.5, the fluid 
velocity started to decline, and the radial velocity  f  steadily decreases as the Reynolds number intensifies. 

Fig. 3(d) depicts the influence of the magnetic Reynolds number R3 on radial velocity  f  . The impact of 
magnetic Reynold number R3 reduces the radial velocity of the fluid. But, at 0.3   the flow exhibits inverse 
behavior and started inclination. The B0 field is perpendicular to the radial velocity  f  because as the magnetic 
effect reduces, the fluid flow tends to increase. 
 

(a) 
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(b) 

(c) (d) 

Figure 3: Axial and velocity outlines versus (a) & (c) Reynolds number R1 (b) & (d) Magnetic Reynolds 
number R3. 

Figure 4(a) categorizes the significances of Prandtl number Pr on the energy profile    . Physically, the fluid 
with high Prandtl effects has the less thermal capability. That’s why the fluid temperature dropped with the action 
of the Prandtl effect. Fig. 4(b) describes the possessions of the Reynolds number on the thermal energy transition
   . When the Reynolds number rises, the fluid's kinematic viscosity decreases, increasing the fluid's kinematic 

capacity. The fluid temperature raised as a result of the high kinematics capacity.  

(a) (b) 

Figure 4: Energy outlines versus (a) Prandtl number Pr (b) velocity Reynolds number R2. 

Figure 5(a) represents the upshots of the Batchelor number on the magnetic power profile  m  . The magnetic 
permeability of fluid enhances as Bt grows. That’s why magnetic strength profile show reduction with the positive 
increment of Batchelor number. Similarly, as the Reynolds number R2 raises, the magnetic resistance of the fluid 
rises, which is shown in Fig. 5(b). 
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(a) (b) 

Figure 5: Axial magnetic strength profile versus (a) Batchelor number Bt (b) velocity-based Reynolds 
number R2. 

The effects of Bt and R2 on the magnetic strength profile are presented in Fig. 6(a) & 6(b). As the parameter Bt 
reduces, the magnetic strength on fluid decreases, but the magnetic strength on fluid flow often decreases with 
cumulative effects of R2. In Fig. 7, the convergence of the HAM technique is evaluated, and convergence zones 
of velocities and energy profiles are reviewed. The quantitative analysis between skin friction and Nusselt number 
for physical parameters Pr and Bt are illustrated through Tables 3 & 4 respectively. From table 4, it can be 
concluded that the present results are in best settlement with the published work. Table 5 displays the comparative 
analysis between HAM and RK4 methods. 

 

Figure 6: Radial magnetic strength profile versus (a) Batchelor number Bt (b) velocity Reynolds 
number R2. 
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Figure 7: (a) ℏ-curve for velocity field (b) ℏ-curve for energy profile. 
Table 3: The comparative analysis between the analytic and numerical techniques for '(1), ''(1)f f & 

'(1) . 
Parameters HAM RK4 PCM 
Pr Bt '(0)f  ''(0)f  '(0)  '(0)f  ''(0)f  '(0)  '(0)f  ''(0)f  '(0)  
6.0 0.3 2.43363 2.42378 0.258363 2.44965 2.42784 0.37006 2.43364 2.42379 0.258364 
6.5 0.4 2.43776 2.42286 0.286760 2.43377 2.42092 0.40676 2.43778 2.42287 0.286762 
6.5 0.5 2.36186 2.42193 0.315156 2.43790 2.42099 0.44342 2.36188 2.42194 0.315157 
7.0 0.6 2.2508 2.24310 0.334805 2.24940 2.23612 0.53654 2.25090 2.24321 0.334813 
7.5 0.6 2.07495 2.06278 0.351248 2.06953 2.05470 0.56303 2.07499 2.06289 0.351249 

 
Table 4: The comparative analysis between the existing literature and present work for '(1), ''(1)f f  & 

'(1) . 
Parameters Ref. [10] HAM RK4 
Pr Bt ''(1)f  '(1)  ''(1)f  '(1)  ''(1)f  '(1)  
6.0 0.3 3.42371 0.358362 3.42378 0.358363 3.42784 0.47006 
6.5 0.4 3.42283 0.386761 3.42286 0.386760 3.42092 0.50676 
6.5 0.5 3.42192 0.415154 3.42193 0.415156 3.42099 0.54342 
7.0 0.6 3.24314 0.434802 3.24310 0.434805 3.23612 0.63654 
7.5 0.6 3.06275 0.451247 3.06278 0.451248 3.05470 0.66303 

 
Table 5: The comparative analysis between the HAM and RK4. 

HAM RK4 
  ( )f   ( )   ( )m   ( )h   ( )f   ( )   ( )m   ( )h   
0 0.5000 1.0000 1.0000 1.0000 0.5000 1.0000 1.0000 1.0000 
1.0 0.5651 0.2930 0.4588 0.4436 0.5638 0.2916 0.4759 0.4577 
2.0 0.6113 0.0914 0.1944 0.1842 0.6077 0.0869 0.2185 0.2042 
3.0 0.6290 0.0312 0.0769 0.0722 0.6236 0.0270 0.0979 0.0903 
4.0 0.6354 0.0112 0.0292 0.0273 0.6287 0.0088 0.0440 0.0397 
5.0 0.6378 0.0040 0.0108 0.0101 0.6303 0.0030 0.0193 0.0173 
6.0 0.6386 0.0015 0.0040 0.0037 0.6308 0.0011 0.0083 0.0074 
7.0 0.6389 0.0005 0.0014 0.001 0.6310 0.0004 0.0035 0.0031 
8.0 0.6391 0.0002 0.0005 0.0005 0.6311 0.0002 0.0014 0.0012 
9.0 0.6391 0.00007 0.0002 0.0001 0.6312 0.0001 0.0004 0.0004 
10.0 0.6391 0.00002 0.00007 0.0000 0.6312 0.0000 0.0000 0.0000 



 Squeezing Flow between Two Parallel Plates under the Effects of Maxwell Equation and Viscous Dissipation                                             129                                       

 
 

 
7.     Conclusion 

 
We have studied, the incompressible, unsteady electro viscous fluid flow across two parallel plates with heat 
transmission. The phenomena have been formulated in form of the system of PDEs. Further, the modeled 
equations are simplified via a similarity framework to the system of ODEs.  The HAM and RK4 techniques are 
implemented for the solution of the problem. Based on the above computation, the key findings are. 

 The axial  f  and radial velocity of fluid reduces with the enhancement of Reynolds number R1.  

 The magnetic-based Reynold number R3 improves both the radial and axial velocity  f  of fluid 
flow. 

 The magnetic strength profile  m  can be reduced by the action of Bt, while it can be increased 
with the rising credit of velocity-based Reynold number R2. 

 Fluid temperature significantly declines with the increment of Prandtl number Pr and R2. 
 The numerical technique RK4 is a fast convergence method towards its solution than the analytic 

technique HAM. 
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