
IJEMD-CSAI, 1 (1) (2022), 8-17 https://doi.org/10.54938/ijemdcsai.2022.01.1.80

International Journal of Emerging Multidiciplinaries:
Computer Science & Artificial Intelligence

Research Paper
Journal Homepage: www.ijemd.com

ISSN (print): 2791-0164

Evaluating Coarse-Grained FPGAs having Hard-Blocks Placed in
Columns
Husain Parvez

LIP6, Université Pierre et Marie Curie 4, Place Jussieu, 75005 Paris, France

Abstract

This work uses a coarse-grained FPGA architecture exploration environment to compare a column-based FPGA architecture with a non-column
based architecture. Different groups of netlists are collected and a single floor-planning is optimized for all the netlists in a group. It has been
found that the coarse-grained architectures that do not limit their hard-blocks to columns give much better placement costs and routing channel
usage than the architectures that limit their hard-blocks to columns. Though a column based architecture can give a more compact layout as
compared to a non-column based architecture; but the latter gives higher gains in the channel width requirements and can result in overall area gain.

1. Introduction

A number of commercial FPGA architectures [4] [3] have hard-blocks (Multipliers and RAMS) placed in
columns. The basic model of such kind of FPGA can be represented by Figure 1.1 where the columns of
hard-blocks are placed in between the soft-blocks. Placing the hard-blocks in columns not only facilitates
the generation of the final layout but it also permits to change the widths of the complete column according
to area needs, eventually generating a compact layout. Whereas a non-column based floor-planning requires
both the width and height of the hard-blocks to be multiple of smallest block in the architecture, which
causes some area loss. This work shows that the hard-blocks not placed in columns result in better placement
cost, and eventually lesser channel width is required to route a netlist, and thus area gain is achieved.
This work uses a new coarse-grained FPGA architecture exploration environment [6]. The major feature
of this environment is that it refines the FPGA floor-planning along with the placement of netlist. It can
also place multiple netlists and changes their architecture floor-planning to get a trade-off architecture for
a given set of netlists. A number of other exploration environments have been proposed and extensively
used. Like VPR [8] (Versatile Place and Route) has been extensively used for the exploration of fine grained
FPGAs. Inherently it does not support coarse grained blocks. However [7] and [13] have extended VPR to
explore specific coarse grained architectures. [10] has developed the virtual embedded block methodology
(VEB) to model arbitrary embedded blocks on existing commercial FPGAs. Later [18] has incorporated
VEB methodology in VPR, thus enabling the support of architectures other than commercial FPGAs. [16]
has also developed a CAD tool for FPGAs with Embedded Hard Cores. In comparison to our environment,
all these previous environments propose a pre-determined floor-planning organization and does not consider
the problem of finding the block positions in the architecture.
Besides using the new exploration environment [6], this work also upgrades it in many respects. Different

parameters and techniques used by VPR [8] are implemented here which has helped improve the results. The
parameters of the simulated annealing algorithms are set to be the same as that used by VPR [8]. The Range

Email addresses: parvez.husain@lip6.fr (H. Parvez)

https://doi.org/10.0000/ijemdcsai.2022.01.1.artnumber
https://www.ijemd.com

Evaluating coarse-grained FPGAs having hard-blocks placed in columns 9

Figure 1.1: Coarse-grained FPGA

Limiter operation (discussed later in detail) is also applied. The implementation is further optimized and the
execution time information is added in this work. The initial reference architecture used for comparison in
the earlier work [6] was a very elementary architecture which does not at all represented any commercial
architecture floor-planning. So this work uses the reference architecture to be a column-based architecture
which infact represents the floor-planning of commercial architectures. Moreover a column-move operation is
also implemented to optimize a column-based architecture for a set of netlists. Finally a much comprehensive
set of netlists is used in this work.
Section 2 and 3 present a brief introduction of the coarse-grained exploration environment and the latest
changes done in it. Section 4 gives the basic experimental methodology, the details of the benchmark circuits
and the area model. In Section 5 the results and their analysis is presented.

2. Exploration Environment

The basic working ground of the exploration environment is a grid of equally sized SLOTS. CELLS of
different sizes can be mapped on this grid. A CELL can be any block; a soft-block like a Configurable Logic
Block (CLB); or a hard-block like an adder, multiplier or RAM etc. A CELL when mapped on the slot-grid
is referred to as a SITE. Each SITE occupies one or more SLOTS. A routing channel passes between every
two neighboring SITES. A SITE occupying more than one SLOT can allow routing channel to pass through
it. A software flow maps the instances of a netlist on the SITES of its respective types. The PLACER, a
software module, refines both the placement of SITES on the slot-grid (floor-planning) and the mapping of
instances on the SITES (binding). The PLACER can also optimize an FPGA floor-planning for binding a set
of netlists on it at mutually exclusive times. This technique of placing a set of netlists is proposed in [11],
where it is used to explore configurable ASICs in a single dimension. This environment extends the same

10 International Journal of Emerging Multidiciplinaries

Figure 2.1: Software Flow

Figure 2.2: FPGA Architecture Floor-plannings

methodology to explore two dimensional island-style FPGA architectures. After floor-planning and binding,
the ROUTER routes the netlist on the architecture.
Software Flow: An architecture description file is used to define the complete architecture description
details. Once the architecture is properly defined, a software flow (as shown in Figure 2.1) maps the netlists
on it. The input to this software flow is a structural netlist in VST (structured VHDL) format. This netlist
can also be generated from ‘C’ code using GAUT [2]. The VST file is composed of the traditional standard
cell library instances and the hard-block instances. VST2BLIF tool is modified to convert the VST file
having hard-blocks to BLIF format. Later a PARSER removes all the instances of hard-blocks and passes the
remaining netlist to SIS [17] for synthesis into 4-LUT format. All the dependence between the hard-blocks
and the remaining netlist is preserved by adding new input and output pins to the main netlist. After SIS,
and later by the conversion of the netlist to NET format through T-VPACK [9], another parser adds all the
removed hard-blocks into the netlist. It also removes all the previously added inputs and outputs. This final
netlist in NET format, containing LUTs and hard-blocks, is passed to the PLACER and the ROUTER. In
future instead of SIS, we intend to use ABC [1].

Evaluating coarse-grained FPGAs having hard-blocks placed in columns 11

3. The Placer

Simulated Annealing Parameters: The PLACER uses the Simulated Annealing algorithm [8] [15] to
minimize the placement cost. In this work all the parameters of simulated annealing are set to be the same as
that used in VPR [8]; i.e. the method of setting the initial temperature, the number of moves per temperature
step, the method of updating the annealing temperature, the formula for accepting a move operation and the
terminating condition of the annealer.
This work also applies the Range Limiter (RLimit) operation for coarse-grained architectures. It is shown
in [8] [14] that it is desirable to keep the fraction of moves accepted near 0.44 for as long as possible. This
is achieved through the Rlimit functionality which limits an interchange operation to be restricted to the
rectangular space in its surrounding. The rectangular space diminishes with the decrease in acceptance ratio.
Thus the more the interchange operation takes place in its vicinity, the more probable it is to be accepted and
thus maintains the fraction of moves accepted. Generally in case of architectures containing homogeneous
blocks, the Rlimit operation is implemented by randomly selecting the destination position from within the
rectangular space surrounding the source. Whereas in case of heterogeneous architectures, the range limiter
also needs to verify that the randomly selected destination SITE from within the range limit must be of the
same type as the source SITE. Hence some additional execution time is required.

Bounding box formation: The bounding box (bbx) of a signal or a net is the minimum rectangular area
that contains the driver instance and all the receiver instances of the net. The PLACER tries to minimize the
sum of the half-perimeters of the bounding boxes of all the nets. Since the hard-blocks in a coarse-grained
architecture can span to two or more slots. Thus for more precise placements costs the position and direction
of pins are also considered in the formation of bounding box. Similarly all the input pins of a SITE having
same class are also included in the bbx. Thus the definition of the bounding box used in this work is the
minimum rectangular area that contains the driver pin and the receiver pins of the net, and all the input pins
of a SITE having the same class as that of the receiver pin of the SITE connected to the net.

Placer Operations: Different kind of operations are implemented to optimize the placement costs. The
PLACER either (i) moves an instance from one SITE to another, (ii) moves a SITE from one SLOT position
to another, (iii) rotates a SITE at its own axis, or (iv) moves a complete column of SITES from one SLOT
position to another. After each operation the placement cost is recomputed for all the disturbed nets. Depend-
ing on the cost value and the annealing temperature the operation is accepted or rejected. Multiple netlist
files can be placed together to get a single architecture floor-planning for all the netlists. With multiple netlist
placements, each SITE can allow multiple instances to be mapped on it; but multiple instances of the same
netlist cannot be mapped on the same SITE.

The PLACER operation is randomly applied to an instance of any of the input netlists, or to a SITE in the
architecture. If the selected SITE is restricted to remain in a column, then a SITE move operation will move
the complete column along. A SITE which is not restricted to remain in a column cannot be swapped with a
SITE in a column.
In case of multiple netlist placements, the placement operation is applied both on the instances of each of the
netlists, and on the SITES in the architecture. In case of SITE movement, the change in the placement costs
of all the instances mapped on the SITE influence the acceptance or rejection of the SITE move. The SITE
movement acceptation is done according to some weight assigned to each netlist. This helps improve the
floor-planning more in favor of some netlist than others. The experimentation performed in this work gives
same weight to all the input netlist.

4. Experimentation

The main aim of this experimentation is to compare different aspects of a column-based layout with a non
column-based layout of a coarse-grained FPGA. A variety of test benches are collected which are further
distributed into groups (each group containing 3 to 5 netlists). The aim is to find an FPGA floor-planning for
each group. All the netlists in a group influence the floor-planning thus resulting in a trade-off floor-planning.
For each group three type of floor-planning are explored. (i) A fixed column based floor-planning in which
the hard-blocks of each type are placed in columns at equal spacing (as shown in Figure 2.2 (a)) (ii) A
trade-off floor-planning achieved through a column move operation (shown in Figure 2.2 (b)) (iii) A trade-off
floor-planning achieved through a block move operation (Figure 2.2 (c)). Initially the floor-planning (ii) and

12 International Journal of Emerging Multidiciplinaries

Block Name Netlists Target Block Sizes
1 2 3 4 5 6 7 8 9 10 11 12

Fir Fft Adac Dcu Target-1 (18x12) Block Size Inputs Outputs Slots for Block % free space
Supply Ratio 1:5 Lamda2 ch >= 9 Size/Shape for ch=11

clb 32 94 47 34 94 58500 4 2 1 1x1 -
mul 8 8 16 4 4 - 1 4 1075250 16 16 9 3x3 1.56%
slansky 16 3 3 - 1 3 306750 32 16 8 2x4 2.62%
sff 8 4 - 2 4 4 36000 8 8 3 2x2 13.78%
sub 8 - 6 - 2 6 154500 17 8 4 2x2 1.64%
smux 16 - - 1 2 2 36000 33 16 8 2x4 6.83%

Fir16 Prodmat Ellipt Target-2 (36x36) Block Size Inputs Outputs Slots for Block % free space
Supply Ratio 1:26 Lamda2 ch >= 24 Size/Shape for ch=23

clb4 (4 clbs) 572 1112 818 - 1112 798000 10 4 1 1x1 -
add 16 16 16 8 11 15 - 15 106750 32 16 3 1x3 26%
mul 16 16 16 16 27 - - 27 1908750 32 16 4 1x4 18%

Fft Lms Prodmat Conv Target-3 (52x42) Block Size Inputs Outputs Slots for Block % free space
Supply Ratio 1:7 Lamda2 ch >= 47 Size/Shape for ch=65

clb10 (10 clbs) 1349 1310 1665 1077 1665 3675000 22 10 1 1x1 -
add 18 18 18 180 34 64 58 180 241500 37 19 2 1x2 49.3%
mul 18 18 36 52 16 52 52 52 2498300 36 36 2 1x2 8.14%

Table 1: Netlist block utilisation table

(iii) are attained for each group. Then each netlist in a group is individually mapped on each of the three
floor-plannings. The difference in placement costs, routing channels required to route a netlist, and the total
number of switches used for routing a netlist are compared for the three architectures. Finally the overall
area of complete FPGA is compared using an area model.

4.1. Benchmarks

Real Benchmark: We have a first set of real netlists shown in Table 1. These netlists are divided into 3
groups. The first group comprise of 4 netlists which are a subset of 8-bit Fir, Fft, Adac and Dcu algorithms.
These benches are extracted from their generator written in a procedural language. The Configurable Logic
Block (CLB) used by these netlists is a simple 4 input Look-Up Table (LUT). Besides CLB, 5 different types
of hard-blocks are used by these netlists. The second group of netlists contain 3 netlists comprising of Fir16,
Prodmat and Ellipticass. These benches are generated from the ‘C’ algorithms using GAUT [2]. The CLB
used by these netlists consists of 4 Basic Logic Elements (BLE), where each BLE is a 4 input LUT. Similarly
the third group of netlists contains 4 netlists comprising FFT, LMS, Prodmat, and Convolution algorithms;
These benches are also generated from the ‘C’ algorithms using GAUT [2]. The CLB used by these netlist
consits of 10 Basic Logic Elements (BLE), where each BLE is a 4 input LUT. Each CLB containing multiple
BLEs are connected through a full cross bar. The block nomenclature of each of these netlists can be seen in
column 2-5 of Table 1. The target architecture sizes for each of these 3 groups of netlists, their supply ratios
(Hard-Blocks : CLB), and their block requirements can be found in the column 6 of the table. The supply
ratios are rounded up and are combined i.e (all type of hard-blocks : CLB). The remaining entries of the
table will be discussed in the section “Area model”.

Synthetic Benchmark: In order to give support to the above three groups of real netlists, some non-real
(synthetic) testbenches are also used. The major aim of using these benches is that netlists of different
demand-ratio containing a variety of blocks can be tested on architectures of different supply ratio. Since
the main concern of this work is to find the effect of column based floor-planning on the placement cost,
the routing channel requirement and eventually the area; this effect can be produced with any type of block,
provided they are restricted to columns. For this purpose a group of 5 MCNC netlists (s298, apex2, seq,
diffeq and misex3) have been selected. Some randomly chosen CLBs are renamed to type BLK1, BLK2 and
BLK3 which are to be restricted to columns. A total of 12 different groups of netlists (each group comprising
of the above 5 netlists) are used. The characteristics of these netlists can be found in the Table 2. The first 5
groups in the table contain only 1 type of block other than CLB. The next 4 groups of netlists contain 2 types
of blocks other than CLB, and the last 3 groups contain 3 different blocks other than CLB. The target FPGA
size of all these 12 groups is 44x44. The number of hard-blocks (in this case BLK1, BLK2 and BLK3) in
each netlists are exactly multiple of 44; the demand ratio of each group changes with different number of
CLBs in each netlist. In a 44x44 FPGA, a supply ratio of 1:43 means that the architecture contains 1 column
containing 44 hard-blocks, the remaining 1892 are CLBs. 1:21 contains 2 columns, 1:14 contains 3, 1:10
contains 4 and 1:6 contains 7 columns. Since in a column based architecture a single column cannot be
shared by 2 or more type of blocks. This is why a supply ratio of 1:43 is not tested with blk-2 and blk-3, and

Evaluating coarse-grained FPGAs having hard-blocks placed in columns 13

1 2 3 4 5 6
Group Supply Demand Num of Num of Num of Num of

No. Ratio* Ratio** Blocks BLK1 BLK2 BLK3
1 1:43 1:38 1 44 - -
2 1:21 1:19 1 88 - -
3 1:14 1:12 1 132 - -
4 1:10 1:9 1 176 - -
5 1:6 1:5 1 308 - -
6 1:21 1:19 2 44 44 -
7 1:14 1:12 2 88 44 -
8 1:10 1:9 2 88 88 -
9 1:6 1:5 2 176 132 -
10 1:14 1:12 3 44 44 44
11 1:10 1:9 3 88 44 44
12 1:6 1:5 3 132 88 88

* For FPGA Size of 44x44
** Average of 5 netlists

Table 2: Synthetic Netlist Characteristics

0 1 2 3 4
No. Netlist Operation Iterations Time(s)
1 Dcu, Adac, Fir, Fft Binding + Column Move 47140 79,90
2 Dcu, Adac, Fir, Fft Binding + Block Move 47140 36,30
3 Dcu Binding 3389 1,31
4 Adac Binding 3678 1,01
5 Fir Binding 2775 1,53
6 Fft Binding 13198 5,12
7 Fir, Prodmat, Ellipticass Binding + Column Move 748231 2100
8 Fir, Prodmat, Ellipticass Binding + Block Move 748231 1590
9 Fir Binding 83162 83,4

10 Prodmat Binding 174877 213
11 Ellipticass Binding 93106 126
12 Fft, Lms, Prodmat, Conv Binding + Column Move 2699561 52100
13 Fft, Lms, Prodmat, Conv Binding + Block Move 2699561 11700
14 Fft Binding 303305 1030
15 Lms Binding 135146 917
16 Prodmat Binding 216863 690
17 Conv Binding 176136 598

Table 3: Execution time table

the supply ration of 1:21 with blk-3. Although an FPGA floorplanning can be made a non-square to get more
columns. But it gives rise to an inefficient placement cost [8]. This inflexibility of having a desired supply
ratio with a desired number of block types is one of the major drawbacks of the column based architectures.

4.2. Area Model

An area model is devised to determine (i) the area of a single slot in the slot-grid and (ii) the number
of slots required by each hard-block. This model is derived from a tile-based FPGA Layout generation
methodology [5]. The view of a single CLB slot in a tile-based layout can be seen in Figure 4.1. The area
model considers each slot to be a single tile containing the block, the connection boxes (for connecting inputs
and outputs with the routing channel), the routing channels on its top and right side, and the switch box of
the top right corner. The area of a slot depends on (i) the area of a block (ii) the total number of inputs and
outputs of the block and (iii) channel width. The basic sizes of the blocks (without connection boxes and
routing channel) are measured in ALLIANCE [12] using a symbolic standard cell library ‘SXLIB’. These
sizes are shown in the 7th column of Table 1. The number of inputs and outputs of each block can be found
in the column 8 and 9 of the table. The only missing parameter for calculating the size of a slot is the channel
width which cannot be exactly determined before the routing phase. But atleast the threshold channel widths
can be found at which the slot occupancy of hard-blocks change. So a threshold channel width of 9, 24 and
47 are found for Target-1,Target-2 and Target-3 architectures respectively. If the maximum routing channel
required by these target architectures is below these thresholds then the slots required by the hard-blocks can
be further reduced. The smallest block in the target architecture is made equivalent to be occupying 1 slot
which is a CLB, CLB4 and CLB10 respectively in the three target architectures. Once the size of a single
slot is determined, the sizes of all the remaining blocks are measured in units of number of slots occupied.
Column 10 of Table 1 shows the slots required by each block for a threshold channel width. There is certainly
some wastage of area when the blocks are represented in terms of number of slots occupied. Similarly while
deciding the shapes of the blocks, the architect might require to further increase the area. The final sizes

14 International Journal of Emerging Multidiciplinaries

Figure 4.1: View of a CLB Tile abutted with neighboring tiles

and shapes of blocks are shown in column 11 of Table 1. The free area in each block is also reported by
the area model. Column 12 of the table shows the percentage free area in each block. In this work no effort
has been made to minimize the free area in each block. This free area can be used to integrate any auxiliary
functionality. One of the uses of this free area can be to integrate shadow clusters [13] so that the precious
routing resources can be reutilized if the hard-block is not used. The experimental analysis with shadow
clusters is left for future work. Besides there can be many other architectural parameters in an FPGA (like
the input and output connectivity of blocks (Fcin, Fcout), the CLB cluster size, etc) that are optimal if they
are in a certain range. These parameters can always be changed to reduce the free area in each hard-block.

5. Results and Analysis

Three groups of real benchmarks and 12 groups of synthetic benchmarks are used to gather results. For
each group, 3 kind of floor-plannings are generated; centered (Figure 2.2-a), trade-off floor-planning
achieved through column move (Figure 2.2-b), and the trade-off floor-planning achieved through block
move (Figure 2.2-c). All the netlists in a group influence the generation of column move and block move
floor-planning. Table 3 shows the execution time of placement for the real benchmarks. The column 3 of
the table shows the total number of inner iterations per temperature step. Column 4 of the table shows the
total execution time of different placement operations on a 2GHz Intel Processor. The time to perform a
Column Move or Block Move operation on a group of netlists is more than the sum of execution time for
binding all the netlists of the group. Binding operation is also performed with the column move and the
block move operation. The implementation of Column Move is still a bit un-optimized, so it takes more time
than the Block Move operation. For the architectures containing different types of blocks, the columns in the
centered architecture (Figure 2.2-a) are assigned to different blocks in such a way that each type of block

Evaluating coarse-grained FPGAs having hard-blocks placed in columns 15

(a) Placement Gain (b) Average Channel Width Gain

(c) Maximum Channel Width Gain (d) Switch Gain

Figure 4.2: Comparison results of column move and block move normalized to centered architecture

should be near to other blocks. For example in case of group-11 in Table 2, the 4 columns of hard-blocks
have been assigned to the blocks in the following order blk-1—blk-2—blk-3—blk-1. There can be a problem
in assigning columns to hard-blocks for architectures having more than 3 type of hard-blocks. This is also a
drawback of column-based architectures.
Once all the 3 floor-plannings are finalized, each netlist is individually placed (binded) on all the 3 floor-
plannings. This ensures that the total number of inner iterations per temperature step are same for binding a
netlist on all the three architectures. It can also be seen from Table 3 that as the total number of netlist in a
group increase, the total execution time of block move or column move operation increases. This execution
time can be reduced by parallelizing the move operation which is left for future work.
Figure 4.2 shows the percentage improvement of different results of column move and block move normalized
to the centered architecture. For each group the placement gain (Figure 4.2-a), the average channel width
gain of all the netlists in a group (Figure 4.2-b), the maximum channel width gain of any of the netlist in a
group (Figure 4.2-c) and the total switch used gain (Figure 4.2-d) are shown. The vertical-axis represents
the gain, whereas the horizontal-axis shows different architectures represented by their supply ratios. The
architectures having supply ratios of 1:26, 1:7 and 1:5 represent the real benchmarks. The remaining
architectures represent the synthetic groups. It can be seen in the figure that the architecture achieved through
block move operation is generally much better than both the column move and the centered architecture. The
placement gains of the block move operation results in better average channel width gain of all the netlists
in each group. Similarly the maximum channel width required by any of the netlist in a group has also
improved. And finally the switch gain of the architecture after block-move is also significant. The switch
gain showed here is for the reduced channel widths. If the same channel widths as used by the centered
architecture are used, the switch gains are much higher. It is also to be noted that column move has not
shown as significant improvements as by the block-move operation. Instead in some cases the results have
been deteriorated.
As the major portion of FPGA area is taken by the routing channel, a significant gain in routing area means
a gain in the overall area. Generally the maximum channel width gain (Figure 4.2-c) represents the true
gain. But in a column-based architecture, the column width of a hard-block can be easily adjusted according
to the area needs. Whereas in a non-column based architecture, the height and width of each hard-block
aught to be in multiples of a SLOT. So any waste in area of the hard-block will eventually negate the gains
achieved in the maximum channel width. The column 12 of Table 1 shows the percentage area loss in each
hard-block. So using the block sizes as shown in Table 1 and the maximum channel widths gain, we have
calculated the total area gain of the block-move architecture compared to the centered architecture. In a
column-based centered architecture we have not counted the free area of a hard-block. Whereas in a the block
move architecture we have used the exact area shown in the Table 1 including the free area. We have noticed
an area gain of 5% and 3.8% in the block-move Target-1 and Target-2 architectures. However in the Target-3

16 International Journal of Emerging Multidiciplinaries

architecture we have a loss of 3.2%. The loss in Target-3 architecture is mainly due to the add 18 18 18
block which wastes nearly 50% of its area and has got 180 instances in the architecture. However if the free
space in each hard-block is properly utilized by adding auxiliary functionalities, then the gains achieved can
be more significant.

6. Conclusion and Future Work

We have presented a comparison of column-based coarse-grained FPGA architecture floor-planning with
non-column based FPGA floor-planning. Producing the layout of the column-based architectures is relatively
easier. Since only one kind of hard-blocks are found in a column, the widths of the column can be properly
adjusted according to the area needs. However column-based FPGAs have relatively low placement results,
which affects the routing channel requirement and the switches used for routing a netlist. The Column-based
FPGA also puts a limit to the total number of hard-block columns in the architecture if a square FPGA
architecture is required. A non-square FPGA can give more number of columns, but it produces more
inefficient placements [8]. And lastly if a column of hard-blocks contains X instances of a hard-block,
whereas the final application requirement is that of X+1 hard-blocks then it means that an extra column of
hard-block is needed. Which in-turn means that there would always be some un-utilized hard-blocks.
On the other hand, a non-column based architecture layout optimized for a set of applications gives a much
lesser placement cost, which eventually results in lesser routing channel requirement and lesser switch count
(number of switches used in routing a netlist). The number of hard-blocks can be easily adjusted according
to the needs while maintaining the overall FPGA architecture a square. However since both the height and
width of hard-blocks need to be in multiples of CLB, there remains some free space in each hard-block. And
the loss incurred by this unutilized free area might nullify or even further deteriorates the area in cases of
having high supply ratio. However this unutilized free area in each hard-block can be used to integrate some
auxiliary functionality in each hard-block. Another solution to minimize the area loss in each hard-block can
be to represent the smallest block (a CLB) in multiple slots and not just 1 slot. In this way the height and
width of hard-blocks need to be multiple of a smaller slot than the complete CLB. But this change requires
more improvement in SITE movement techniques and even addition of some empty slots to fill in the gaps.
In future we intend to reduce the execution time of finding an architecture floor-planning for a set of netlists.
This can be done by parallelizing the tasks. Finding an architecture floor-planning requires the movement of
instances of netlists from one SITE to other, and the movement of SITES. So the movements of instances of
different netlists can be done in parallel as they are not dependent on each other whereas the movement of
SITE requires to be done sequentially with the movement of netlist instances.
In this work we have optimized only the floor-planning of an FPGA for a set of applications. This work can
also be extended towards optimizing the reconfigurable routing channel for the set of input netlists.

References

[1] Berkeley logic synthesis and verification group, ABC: A system for sequential synthesis and verification.
http://www.eecs.berkeley.edu/ alanmi/abc/.

[2] GAUT - high-level synthesis tool from C to RTL, www-labsticc.univ-ubs.fr/www-gaut/.
[3] Stratix II device handbook. Altera, 2004.
[4] Virtex-4 family overview. Xilinx, 2005.
[5] Generic Techniques and CAD Tools for automated generation of FPGA Layout. PRIME, pages

141–144, 2008.
[6] A New Coarse-Grained FPGA Architecture Exploration Environment. ICFPT, pages 285–288,

2008.
[7] M. Beauchamp, S. Hauck, K. Underwood, and K. Hemmert. Embedded floating-point units in fpgas.

International Symposium on Field Programmable Gate Arrays (FPGA), pages 12–20, 2006.
[8] V. Betz, A. Marquardt, and J. Rose. Architecture and CAD for Deep-Submicron FPGAs. January 1999.
[9] V. Betz and J. Rose. VPR: A New Packing Placement and Routing Tool for FPGA research. Interna-

tional Workshop on FPGA, pages 213–22, 1997.
[10] C.H.Ho, P.H.W.Leong, W.Luk, S.Wilton, and S.Lopez-Buedo. Virtual embedded blocks: A methodol-

ogy for evaluating embedded elements in fpgas. Proceeding of FCMM, pages 35–44, 2006.
[11] K. Compton and S. Hauck. Automatic design of area-efficient configurable asic cores. IEEE Transaction

on Computers, pages 662–672, 2007.
[12] A. Greiner and F. Pecheux. Alliance: A complete set of CAD tools for teaching VLSI design. 3rd

Eurochip Workshop, 1992.

Evaluating coarse-grained FPGAs having hard-blocks placed in columns 17

[13] P. Jamieson and J.Rose. Enhancing the area-efficiency of FPGAs with hard circuits using shadow
clusters. IEEE FPT, pages 1–8, 2006.

[14] J.Lam and J.Delosome. Performance of a New Annealing Schedule. DAC, pages 306–311, 1988.
[15] Kirkpatrick, Gelatt, and Hecchi. Optimization by simulated annealing. Science, 220(4598):671–680,

1983.
[16] S.Dai and E.Bozorgzadeh. Cad tool for fpgas with embedded hard cores for design space exploration

of future architectures. FCCM, pages 329–330, 2006.
[17] E. M. Sentovich and al. Sis: A system for sequential circuit analysis. Tech. Report No. UCB/ERL

M92/41, University of California, Berkeley, 1992.
[18] C. Yu. A tool for exploring hybrid fpgas. Proceeding of FPL PhD forum 2007, pages 509–510, 2007.

	Introduction
	Exploration Environment
	The Placer
	Experimentation
	Benchmarks
	Area Model

	Results and Analysis
	Conclusion and Future Work

