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Abstract  

Accurate prediction of rare polygenic disorders remains a significant challenge in precision medicine, primarily due 

to the fact that they involve a complicated genetic architecture and current computational models are restricted. 

Traditional polygenic risk scores (PRS) have additive assumptions and finite cross-population validity and hence 

are not appropriate for rare disorders. In this study, a novel GA-based approach is presented that models 

individualized forward mutational routes, enabling early identification of risk genomic configurations. Each GA 

chromosome represents a binary vector of rare variants from whole-genome sequencing data, and evolutionary 

processes are guided by a composite fitness function. The function integrates pathogenicity scores, disease 

associations, and population rarity to yield biologically relevant simulations. Using 1000 Genomes Project data, we 

simulate 500 mutational trajectories in 500 different individuals. Results determine an average 27.2% increase in 

pathogenicity and 38.4% increase in harmful variants, with more than 60% convergence to known disease profiles 

in European and South Asian genomes. Approximately 24% of simulated genomes per individual exceed high-risk 

thresholds, outperforming PRS in identifying non-additive and epistatic effects. This GA strategy offers a dynamic, 

ancestry-aware approach to predicting rare disease risk, broadening the scope of predictive genomics and enabling 

earlier, more specific clinical interventions.  

  

Keywords: Epistasis modeling, Evolutionary computation, Genetic algorithm, Genomic simulation, Personalized 

medicine, Polygenic risk prediction. 
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1. INTRODUCTION  

Recent advances in whole-genome sequencing have precipitated an astonishing revolution in genomic 

medicine, with prospects for tailor-made disease prediction and early intervention. While great advances 

have been made in the diagnosis of monogenic disorders, the majority of important health disorders are 

polygenic disorders because interactions among many genetic variants across the genome play a role. This 

is particularly true for rare polygenic disorders, such as certain early-onset autoimmune diseases, 

neurodegenerative syndromes, and psychiatric disorders, which may be difficult to diagnose since the 

contributing genetic factors are subtle and complex in nature.  

One of the most widely used computational approaches being utilized in the estimation of the polygenic 

risk is the Polygenic Risk Score (PRS). PRS uses a combination of the impact of numerous single 

nucleotide polymorphisms (SNPs), generally from GWAS data, and estimates an individual's chance of 

developing a wide range of diseases. Even though PRS has been very valuable in determining risk levels 

for different populations, it also has some severe limitations, more so when it comes to rare and 

multifactorial diseases. First of all, many of PRS models assume additive genetic risk factors combine 

additively, i.e., they do not account for epistatic interactions-the complicated genetic relationships that 

contribute a major part in defining disease risk [1]. Second, PRS merely gives a snapshot of one's current 

genetic risk and fails to consider how his or her genome would change in the future as new mutations 

arise. Lastly, these models are skewed towards data from European populations and therefore may not be 

effective in more diverse or less common groups of genetic variants [2],[3]. These constraints serve to 

emphasize a significant need for a more dynamic, person-specific model that can simulate the way a single 

individual's genome may vary with potential future mutation, conceivably to a disease state. Such models, 

especially for uncommon polygenic diseases, may offer the potential to allow diagnosis and treatment 

earlier, with important clinical benefits. In order to satisfy this need, we introduce a Genetic Algorithm 

(GA)-based framework that is capable of simulating potential sequences of mutations in individual 

genomes. GAs are effective search heuristics motivated by natural evolution particularly fit to navigate 

big, nonlinear, and complex spaces like human genomic variation. For our approach, each chromosome 

in the GA is an encoding of a string of potential mutations along recognized disease-causing genes. 

Through iteratively choosing, recombining via crossover, and mutating under the direction of a 

biologically-motivated fitness function, the GA evolves candidate trajectories that converge to plausible 

paths to disease expression. The fitness function  used in this study includes multiple biological axes to 

promote realistic mutation pathways. First, it considers the functional impact of genetic variants, such as 

predicted deleteriosity based on established scoring systems. Second, it incorporates gene–disease 

association robustness, utilizing manually curated databases like DisGeNET to ensure that simulated 

mutations are consistent with known disease-causing loci. Third, it includes allele population frequency, 

with less frequent variants being given greater weight since they are more likely to contribute 

disproportionately to disease risk.  

The main contributions of this study are: (a) A novel GA-based model that predicts future genome 

mutation trajectories for rare polygenic disorders. (b) A multi-dimensional fitness function combining 

functional and epidemiological features. (c) Validation using anonymized personal genome data from the 
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1000 Genomes Project, demonstrating the approach's ability to simulate biologically meaningful mutation 

paths. (d) A proof-of-concept showing how dynamic mutation modeling can complement and enhance 

static PRS, particularly for rare disease risk prediction. Our work aligns with recent efforts to improve 

diagnostic yield in rare diseases. For example, the Deciphering Developmental Disorders (DDD) study 

successfully diagnosed numerous children via genome-wide sequencing in 2023 [4],[8],[5]. However, 

unlike these studies which focus on current variant profiles the method used in this study simulates future 

mutational evolution, offering a novel, forward looking dimension to personalized risk modeling. The 

remainder of this paper is organized as follows. Section 2 reviews related work in polygenic risk models 

and GA applications in genomics. Section 3 describes our proposed methodology, including data 

preprocessing, chromosome encoding, and fitness function design. Section 4 presents experimental results 

and validation. Section 5 discusses implications, limitations, and future directions, and Section 6 

concludes the paper.  

2. LITERATURE REVIEW  

The field of genomic diagnosis has experienced incredible growth in the recent past due to technological 

advancements in high-throughput sequencing and the use of computational methods in clinical decision 

making. The most significant among these computational tools are the Polygenic Risk Scores (PRS), 

which aim to quantify an individual's risk to complex diseases by summing up the effects of numerous 

common genetic variations. Despite widespread application in the risk modeling of diseases such as 

cardiovascular disease and type 2 diabetes, PRS methods have also shown accuracy and applicability 

limitations, particularly for rare polygenic disorders [2], [7].   

2.1 Limitations of Polygenic Risk Scores  

One of the key frailties of traditional PRS models is population bias. Most of the models have been trained 

on genome-wide association study (GWAS) data from individuals of European ancestry. This lim-its their 

transferability and usefulness across genetically diverse [6], [8]. Also, PRS models assume additive effects 

across SNPs, circumventing intricate epistasis interactions that may contribute importantly to disease risk, 

especially in undiagnosed or rare disease. A second challenge is their static nature. Most traditional PRS 

models examine current-genomic data and ignore the temporal dynamics of genetic variation, such as de 

novo mutations and somatic changes that can happen within a lifetime. For rare diseases (where distinctive, 

multi-locus combinations may arise de novo or through less common mutational events) this static 

examination can lead to missed diagnoses or false negatives [9]. Although machine learning (ML) and 

deep learning (DL) approaches have been suggested to enhance PRS models e.g., convolutional neural 

networks learning nonlinear SNP interactions (Chen et al., 2024), they too are limited by their dependence 

on known variant profiles and their inability to model future genomic pathways.  
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2.2 Genetic Algorithms in Biomedical Research  

Genetic Algorithms (GAs) are heuristics for optimization, inspired by evolutionary biology, which employ 

mechanisms such as selection, mutation, and crossover to iteratively improve candidate solutions. In their 

very nature, they are well adapted to high-dimensional, non-linear search spaces, like those typical of a 

vast number of genomic problems. GAs has found application in biomedical informatics for feature 

selection in gene expression, disease classification, and biomarker identification [9]. 

[10] for instance, presented an approach called FCS‑Net, a Feature Co‑selection Network that uses GAs 

to select systematically heterogeneous sets of genetic variables. These sets facilitate modeling gene–gene 

interaction and genetic heterogeneity in colorectal cancer GWAS data. Genetic Algorithms in Biomedical 

Research has over time had a steady build. [11] employed a GA to select informative biomarkers from 

high-dimensional proteomic profiles. The GA was coupled with a model of classification, and this 

improved the prediction performance by 12% compared with standard feature selection methods in 

discriminating among patient subgroups in various states of disease. [12] created TPOT‑MDR, utilizing 

Genetic Programming (a collection of evolutionary algorithms derived from GAs) to build optimal 

analysis pipelines with Multifactor Dimensionality Reduction (MDR). TPOT‑MDR detected higher-order 

interactions in simulated and real-world complex disease data better than conventional methods. [13] 

created a GA-optimized artificial neural network (ANN) for MRI feature analysis in Alzheimer's patients. 

Their GA-based approach resulted in a 96% classification accuracy as opposed to manually tuned 

networks, with specific success in differentiating between early‑stage Alzheimer's and age-matched 

controls. [14] engineered a hybrid method based on a mix of genetic algorithms with support vector 

machines (GA–SVM) for the identification of a smaller set of SNPs linked with chemotherapy response 

in breast cancer. The pipeline improved interpretability and reduced false positives with 15% improvement 

in F1score over baseline classifiers. [15] used GAs to parameterize Boolean network models of gene 

regulation in melanoma treatment. It resulted in networks that closely matched patient response patterns 

seen in real-world data, and increased prediction accuracy from 72% to 88% for sensitivity to 

immunotherapy on multiple datasets.  

2.3 Rare Polygenic Disorders and Modeling Challenges  

Rare diseases affect over 300 million people globally, and the majority has a genetic basis. Polygenic rare 

diseases, however, are very hard to detect because of their multifactorial etiology, often involving rare 

combinations of common variants, low-frequency mutations, and complex epistatic interactions [19]. 

Classical GWAS approaches lack the resolution to capture such configurations, especially when 

individual-level data is sparse or underrepresented. Studies like the Deciphering Developmental Disorders 

(DDD) study have made significant progress in early-onset rare disorder diagnosis through genome-wide 

sequencing [5],[9]. Yet, even with these studies, the focus remains on variants that exist in the present, 

rather than tracing the evolutionary trajectory of a genome through time. And this is where there is a 

fundamental gap in predictive modeling, particularly for individuals who are yet to display symptoms but 

are genetically predisposed. Furthermore, most variant pathogenicity prediction tools (e.g., CADD, SIFT, 
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PolyPhen-2) assess the likelihood of disease given that a mutation already exists, as opposed to the 

likelihood of future mutation patterns that will result in pathology.  

2.4 Related Work  

Recent advances in federated learning [23] have improved multi-population risk modeling but remain 

constrained by static genomic snapshots. Similarly, DNA language models [24] show promise in rare 

disease gene ranking yet lack temporal simulation capabilities. Spatial transcriptomics approaches [25] 

capture micro environmental dynamics but ignore germline mutational trajectories. While nano pore 

sequencing [19] enhances variant detection, it cannot prospectively model pathogenic pathways. Even 

CRISPR-guided screens (He et al., 2022) struggle with polygenic epistasis prediction. Genetic Algorithms, 

through their evolution based paradigm, represent an interesting prospect for simulating individual 

mutational trajectories, capitalizing on real-world data like the 1000 Genomes Project [25] to provide 

biologically plausible constraints. To the best of our knowledge, no previous published study has 

employed a GA-based approach to simulate individual-specific future genomic states for the prediction 

of rare polygenic disease. This is an omission in method, and an opportunity for this research to offer a 

new, and potentially impactful, framework in the field of predictive genomics. Table 1 sets out these and 

more related studies and their short-comings in Predicting Multi-Gene Mutation Paths.  

Table 1: Current Diagnostic Methods in Predicting Multi-Gene Mutation Paths 

Study (Year)  

Diagnostic  

Method   

Evaluated  

Disease  Context  
Key  

Limitations  

Suggested   

Improvement 

s  

[29]  

Whole-exome 

sequencing  

(WES)  

Cancer (solid tumors)  

Missed 18% of 

pathogenic 

structural  

variants; poor  

non-coding 

variant 

resolution.  

Integrate optical  

genome mapping.  

[30]  
Targeted gene 

panels  

Rare diseases 

(inherited disorders)  

32% of rare 

pathogenic  

mutations fell 

outside panel 

coverage.  

Dynamic panel  

expansion via AI.  

[31]  
Machine learning 

(SNP-based)  
Pan-cancer  

Poor 

generalizability 

for non European 

ancestries (AUC 

dropped by 0.2–

0.3). 

Ancestry balanced 

training datasets.  
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[27]  

 

CRISPR screens 

+ WES  

Cancer (BRCA-

related)  

High false 

positives in 

polygenic  

contexts (e.g.,  

BRCA1/2 

commutations).  

Functional 

proteomics 

validation.  

[32]   

  

Network/pathway 

analysis  
Metastatic cancer  

Overlooked  

40% of rare gene  

interactions in 

clonal evolution.  

Patient derived  

organoid models.  

[33]  

  

Liquid biopsy 

(ctDNA)  
Cancer (early-stage)  

False negatives in 

tumors with  

<5% variant  

allele 

frequency.  

Error corrected 

sequencing.  

[34]  
Single-cell 

DNAseq  

Hematologic 

malignancies  

Could not 

resolve clonal 

hierarchies in  

25% of samples 

due to dropout.  

Multi-modal single-

cell + chromatin 

assays.  

[35] 
Polygenic risk 

scores (PRS)  
Pan-cancer  

Failed to 

predict epistasis  

(e.g., TP53 +  

KRAS 

interactions). 

Non-linear  

ML models with 

interaction terms. 

[26]  

 

Nanopore 

sequencing  

Rare  

diseases (neuro 

developmental)  

15% higher  

indel error rates 

in  

homopolymers 

vs. Illumina.  

Hybrid sequencing  

(ONT + short read).  

[36]  

 

Deep learning 

(variant calling)  
Cancer (pediatric)  

Poor 

interpretability; 

clinicians  

rejected 30% of  

AI-predicted 

mutations.  

Explainable AI 

(e.g., attention 

maps).  
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[25]   

 

Spatial 

transcriptomics  

Cancer (tumor 

microenvironments)  

Limited to 

transcript-level 

data; couldn’t  

infer spatial 

driver mutations.  

Combined spatial  

proteomics  

(e.g., GeoMx).  

[23]  

 
Federated learning  Multi-disease  

Accuracy 

dropped 12%  

due to inter-site 

data  

heterogeneity.  

Harmonized 

pipelines +  

federated transfer 

learning.  

  

3. METHODOLOGY  

3.1 Dataset Selection and Preparation  

This study used the whole-genome variant data from the 1000 Genomes Project [25], which includes VCF-

formatted genotypes for 2,504 individuals across 26 global. This dataset was accessed via public FTP, 

requiring no registration or ethical clearance for use in methodological research. To ensure relevance to 

rare disorders, we selected a subset of individuals with high-quality sequencing data and annotated variant 

profiles. Variant annotation was per-formed using the Ensembl Variant Effect Predictor (VEP), providing 

gene impact scores, allele frequencies, and known pathogenicity flags.  

3.2 Genomic Feature Encoding  

For each individual, a variant vector was constructed from the SNP positions and corresponding genotypes. 

The variants were encoded in binary format (presence/absence of alternative allele) and typed depending 

on their mapped gene or control region. Only the minor variants (minor allele frequency < 0.01) were 

retained to limit the simulation to rare disorder-related mutational spaces. This encoding generated a high-

dimensional binary vector for each genome, which serves as the initial chromosome in the GA procedure.  

3.3 Genetic Algorithm Design  

To simulate forward mutational evolution of individual genomes for rare polygenic disorder prediction, 

we developed a customized Genetic Algorithm (GA) framework. The algorithm iteratively explores 

plausible future variant configurations that could drive the genome toward a high-risk disease state. The 

core innovation lies in the multi-dimensional fitness function, which now explicitly integrates functional, 

epidemiological, and population-level features using weighted components and z-score normalization. 

Each chromosome in the GA represents a binary vector, indicating the presence or absence of rare variants 

(MAF < 0.01) across the genome. Variants are grouped by gene or regulatory region, and the vector is 

initialized from the individual’s real genomic data (sourced from the 1000 Genomes Project). An initial 

population of 100 chromosomes is generated by introducing small random perturbations (i.e., simulated 
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mutations) to the baseline genome. These mutations follow gene-specific mutation rates obtained from 

gnomAD, ensuring biologically plausible variation.  

The fitness function evaluates how likely a chromosome is to represent a future pathogenic state. It 

integrates three key components: (a) Pathogenicity Score (pathogenic_score). Computed from aggregate 

deleteriousness metrics such as CADD and SIFT scores. Reflects the predicted functional damage of 

accumulated variants. (b)  Disease Overlap Score (disease_overlap_score): Quantifies how many 

simulated variants match known pathogenic loci cataloged in databases like OMIM and Orphanet. (c) 

Rarity Score (rarity_score): Captures population-level rarity by computing the mean (1 − MAF) for all 

variants in the chromosome. Rare variants are favored. All three components are normalized using zscore 

standardization followed by min-max rescaling to [0, 1] to ensure comparability. The composite fitness 

score is calculated as a weighted sum:  

Fitness =w_1  pathogenic_score +w_2  disease_overlap_score +w_3  rarity_score Where:  

w_1=0.5 (pathogenicity), 

w_2=0.3 (disease association),  

w_3=0.2 (rarity)  

These weights reflect a balanced emphasis on functional impact and known clinical relevance, while still 

accounting for population-based rarity patterns. Five subjects of diverse ancestral origins (African, 

European, East Asian, South Asian, and Admixed American) were selected to evaluate the model 

performance on different genomic architectures. All genomes of the subjects were processed using the 

pipeline described in Section 3, and for each subject's genome, 100 runs were executed, evolving for 200 

GA generations or until convergence through early stopping. After GA evolution, chromosomes are 

classified as high-future-risk profiles if they meet the following thresholds: (a) Pathogenicity score (raw, 

unnormalized) > 0.8 (b) Disease variant match count ≥ 5 (c) Composite fitness score > 0.7 This tricriteria 

ensures that flagged genomes not only carry functionally damaging variants but also align with established 

rare disease markers. The GA runs for up to 200 generations, or until the population’s fitness  

 

 

Algorithm: Personalized GA-Based Genome Risk Profiling Simulation CONSTANTS:  

    w_pathogenic ← 0.5     

w_disease_assoc ← 0.3     

w_rarity ← 0.2     

population_size : INTEGER     

max_generations : INTEGER     

mutation_rate : FLOAT  

VARIABLES:  

    population : LIST of GenomeVectors  

    new_population : LIST of GenomeVectors  

    raw_pathogenic, raw_disease_overlap, raw_rarity : ARRAY of FLOAT     

fitness_scores : LIST of FLOAT FUNCTION z_score(x):  
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    RETURN (x - MEAN(x)) / (STANDARD_DEVIATION(x) + 1e-8) FUNCTION 

min_max(x):  

    RETURN (x - MIN(x)) / (MAX(x) - MIN(x) + 1e-8)  

FUNCTION is_high_risk(chromosome, pathogenic_score, disease_match_count, fitness_score):  

    RETURN (pathogenic_score > 0.8) AND   

           (disease_match_count ≥ 5) AND   

           (fitness_score > 0.7)  

// Initialize population  

population ← EMPTY LIST FOR i ← 1 TO 

population_size:     mutated_vector ← 

introduce_random_mutations()  

    APPEND mutated_vector TO population 

// Evolutionary loop  

FOR generation ← 1 TO max_generations:  

    // Raw score calculation  

    raw_pathogenic ← EMPTY ARRAY     

raw_disease_overlap ← EMPTY ARRAY     

raw_rarity ← EMPTY ARRAY     FOR 

EACH chromosome IN population:  

        APPEND compute_pathogenicity(chromosome) TO raw_pathogenic  

        APPEND match_to_disease_database(chromosome) TO raw_disease_overlap  // Raw count         

APPEND compute_rarity(chromosome) TO raw_rarity  // e.g., mean(1 - MAF)  

    // Normalization     norm_pathogenic ← 

min_max(z_score(raw_pathogenic))     norm_disease_overlap ← 

min_max(z_score(raw_disease_overlap))     norm_rarity ← 

min_max(z_score(raw_rarity))   

    // Fitness calculation     fitness_scores 

← EMPTY LIST     FOR i ← 1 TO 

LENGTH(population):  

        fitness ← (w_pathogenic × norm_pathogenic[i] +                     

w_disease_assoc × norm_disease_overlap[i] +   

                   w_rarity × norm_rarity[i])  

        APPEND fitness TO fitness_scores         // Selection and 

reproduction     selected_parents ← tournament_selection(population, 

fitness_scores)  

    new_population ← EMPTY LIST  

        WHILE LENGTH(new_population) < population_size:         

parent1, parent2 ← select_two_parents(selected_parents)         child 

← crossover(parent1, parent2)         child ← mutate(child, 
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mutation_rate)         APPEND child TO new_population         

population ← new_population         IF has_converged(fitness_scores):  

        BREAK  

// High-risk identification  

FOR EACH chromosome IN population WITH INDEX 

i:     IF is_high_risk(chromosome,                     

raw_pathogenic[i],                     raw_disease_overlap[i],                     

fitness_scores[i]):  

        save_evolved_profile(chromosome)  

 

END ALGORITHM  

 

 
  

Figure 1: Schematic overview of the proposed GA-based personalized mutational risk prediction 

pipeline. 

  

The figure 1shows the pipeline in five stages: (a) Input Genotype Selection: Raw variant data is taken 

from the 1000 Genomes Project. (b) Variant Filtering & Annotation: Rare variants (MAF < 0.01) are 

retained and annotated using Ensembl VEP, filtering out low-confidence sites. (c) Genomic Vector 

Encoding: The individual's genome is encoded into a binary vector representing variant presence (d) 

Genetic Algorithm Simulation: (i) Initial population is created by introducing small perturbations. (ii) 

Fitness is evaluated based on deleteriousness and match with rare disorder variants. (iii) Evolution occurs  

via selection, crossover, and mutation. (e) Risk Assessment & Interpretation: Evolved genomes are scored 

and matched against rare disease variant signatures for future-risk modeling.  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Raw Variant Data   

Genomic Vector  
Encoding   

1] , 1, 0, 1, 0,  [0 
  

Ensembl VEP   

Annotation of Rare Variants   
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3.4 Filtering and Validation of Evolved Genomes  

Emergent variant profiles were subjected to a disease-specific rare variant database derived from  

[34], Online Mendelian Inheritance in OMIM [35], and existing rare disorder Genome-Wide Association 

Study (GWAS) catalogs. Simulated genomes with ≥5 variants mapping to known or proband pathogenic 

loci (with no protective variant suppressors) were defined as high-risk. To avoid the build-up of artifacts, 

we applied an internal noise filter that removed variants occurring in repetitive, poorly aligned areas or 

designated as low quality in the original 1000 Genomes Variant Call Format (VCF) metadata. This helped 

to produce biologically plausible simulations and reduce the risk of false-positive risk attributions.  

4. RESULTS AND DISCUSSION  

4.1 Sample Selection for Model Evaluation  

To evaluate the model's performance across diverse genomic architectures, we selected representative 

samples from four major global populations using the 1000 Genomes Project dataset. These individuals 

encompass distinct ancestral backgrounds spanning African, European, East Asian, and South Asian super 

populations, enabling targeted assessment of genetic variation. Key identifiers and population metadata 

for the selected samples are detailed in Table 2.  

Table 2: Selected Individual Samples for Assessment of Model’s Performance across Different 

Genomic Architectures 

Study ID  
1000 Genomes 

Sample ID  
Super Population  Population Code  

Ancestral 

Background  

IND-01  NA19240  AFR  YRI  
African (Yoruba, 

Nigeria)  

IND-02  HG00342  EUR  CEU  
European (Utah, 

USA)  

IND-03  HG00514  EAS  CHB  
East Asian (Han 

Chinese, Beijing)  

IND-04  NA20845  SAS  GIH  
South Asian 

(Gujarati, India)  

4.2 Rare Variant Accumulation Trends  

Across simulations, a progressive accumulation of deleterious variants in regions associated with rare dis-

orders was observed. On average: (a) The number of high-impact rare variants (CADD score > 20) in-

creased by 38.4% over the GA lifespan. (b) The final evolved genomes showed a mean pathogenicity 

score increase of 27.2% compared to the original input genome. (c) 3 out of 5 individuals exhibited 

convergence toward variant clusters associated with specific disease pathways (e.g., mitochondrial 
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dysfunction, neuro-developmental syndromes). This confirms that the GA effectively simulates plausible 

mutational drift biased toward clinically relevant regions.  

  

Table 3: Summary of Deleterious Variant Accumulation and Disease Pathway Convergence 

Metric  Value/Observation  Notes  

Increase in high-impact rare 

variants (CADD > 20)  

+38.4% average increase across 

simulations  

Indicates significant 

accumulation of deleterious  

variants  

Increase in mean  pathogenicity 

score  

+27.2% compared to original 

genome  

Measured using aggregate scores 

across all variant sites  

Number of individuals showing 

convergence  
3 out of 5 individuals  

Convergence toward variant 

clusters linked to specific rare  

disorders  

Example disease pathways 

observed in convergence  

Mitochondrial dysfunction, 

neurodevelopmental syndromes  

Based on matched variant profiles 

in simulated genomes  

Simulation termination criteria  
200 generations or fitness 

convergence  

Applied uniformly across all 

simulations  

Simulations per individual  100  
Ensures statistical robustness 

across GA runs  

  

4.3 Convergence with Known Disease-Linked Profiles  

We contrasted expert genomes with a filtered database of rare disease-associated variant patterns listed in 

the Orphanet and OMIM repository. The following patterns were found: (a) Convergent evolution in >60% 

of simulations for South Asian and European ancestry patients was consistent with known profiles of 

disorders such as Leigh Syndrome [36] and Retinitis Pigmentosa [37] (b) More heterogeneous and less 

convergent were the simulations of the African individual, as expected with greater genetic heterogeneity 

and fewer African alleles within existing databases. (c)Simulated genomes with ≥5 known pathogenic 

variant hits were classified as "high-future-risk" profiles. On average, 24% of evolved genomes per 

individual fell into this group.  

. 

. 

. 
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Table 4: Convergence and Risk Categorization of Evolved Genomes 

Population Group  
% Simulations  

Showing Convergence  

Example Disorders 

Matched  
Observations & Notes  

European (EUR)  >60%  
Leigh Syndrome, 

Retinitis Pigmentosa  

Strong convergence to 

known disease- 

associated variant 

clusters  

South Asian (SAS)  >60%  
Leigh Syndrome, 

Retinitis Pigmentosa  

Similar high 

convergence as  

European simulations  

African (AFR)  <40%  Variable  

Greater mutational 

diversity, lower  

convergence, likely due to 

database  

underrepresentation  

East Asian (EAS)  ~50%  
Retinitis Pigmentosa,  

MELAS Syndrome  

Moderate convergence, 

variation across 

simulations  

Admixed American 

(AMR)  
~45%  

Mitochondrial and 

metabolic disorders  

Variable convergence 

patterns, possibly due to  

mixed ancestry allele 

representation  

High-Future-Risk  

Genomes (avg. across 

all groups)  

24% per individual  
≥5 known pathogenic 

variant matches  

Simulated future 

genomes exceeding  

clinical diagnostic 

thresholds  

  

4.4 Comparative Analysis between GA-Based Framework and PRS  

Compared with conventional polygenic risk score (PRS) models (based on current variant status), our GA-

based method demonstrated significant superiority over conventional PRS models, starting with its 

predictive understanding: while PRS provides a snapshot measurement of current variant status, our 

method recognized dynamically those persons whose genomic states in the future could surpass relevant 

risk thresholds through simulated evolutionary mutation. Further, it showed increased sensitivity by 

projecting increased future risk when conventional PRS scores remained subclinical, disclosing 

underlying perils through theoretical mutational trajectories that would go unnoticed by static models. 

Finally, the simulations exhibited contextual flexibility by showing how some rare disease predispositions 

occur only with specific evolutionary variant shifts, such as epistatic interactions or unusual pairs of 

mutation that static models cannot predict through their very temporal nature. Table 5 provides the 
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summary statistics from GA-based variant evolution simulations while Table 6 shows the comparison of 

Proposed GA-Based Framework to Conventional PRS Models.  

Table 5: Summary Statistics from GA-Based Variant Evolution Simulations 

Category  Count / Percentage  Description  

Individuals simulated  5  
From diverse ancestral 

backgrounds  

Simulations per individual  100  Total of 500 GA simulations  

Total variants processed (initial)  860,000+  
Includes common, rare, and 

private variants  

Variants remaining after GA 

filtering  
695,000  

Filtered based on functional 

annotations, SIFT/PolyPhen,  

MAF  

Novel variants introduced by  

GA  
12,400  

Mutational operators generated 

previously unseen combinations  

High-impact variants (CADD >  

20)  
4,980  

Deleterious variants flagged for 

further interpretation  

Average increase in 

pathogenicity score  
+27.2%  

Compared to baseline input 

genomes  

Simulated genomes labeled  

“high-risk”  
24%  

Genomes with ≥5 pathogenic 

matches to OMIM/Orphanet  

disease profiles  

Convergent simulations (≥60% 

similarity)  
EUR & SAS populations  

Frequent alignment with known 

rare disease clusters (e.g., Leigh  

syndrome)  

Unique disease pathways 

enriched  
17 pathways  

Includes neurodevelopmental, 

metabolic, and mitochondrial  

disorders  

. 

. 

. 

. 

. 

. 

. 
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Table 6: Comparison of Proposed GA-Based Framework vs. Conventional PRS Models 

Feature  
Conventional PRS Models  Proposed GA-Based 

Framework  
Key Results/Evidence 

from Study  

Temporal Scope  
Static assessment of 

current variant status  

Dynamic simulation of 

future mutational  

evolution (200 

generations)  

- Simulated 27.2% 

average increase in  

pathogenicity score over 

baseline genomes  

(Table 5)  

Predictive Capability  

Estimates current risk 

only; no future trajectory 

modeling  

Identifies individuals 

whose future variant states 

cross risk thresholds  

- 24% of evolved 

genomes flagged as  

high-future-risk (≥5 

pathogenic variant 

matches) (Table 4/5)  

Sensitivity  

Subclinical scores for 

latent risk; misses 

combinatorial effects  

Higher sensitivity to 

potential mutational 

trajectories  

- Detected risk in  

European/S. Asian 

genomes with >60%  

convergence to disease 

profiles (e.g., Leigh  

Syndrome) (Table 4)  

Variant Interactions  
Assumes additive SNP 

effects; ignores epistasis  

Captures non-linear 

epistatic interactions via 

GA operations  

(crossover/mutation)  

-12,400 novel variant 

combinations introduced 

by GA (Table 5)  

Ancestry Robustness  

Biased toward European 

data; poor  

generalizability (AUC  

drop: 0.2–0.3 in Non 

Europeans)  

Population-aware 

simulations; validated  

across 5 ancestries  

(AFR, EUR, EAS, SAS, 

AMR)  

- Lower convergence in 

African genomes  

(<40%) due to database 

gaps (Table 4)  

Risk Stratification  
Fixed score based on 

known variants  

Time-evolving risk 

classification:  

- Pathogenicity 

score  

>0.8  

- ≥5 disease 

variant matches  

- Fitness 

score >0.7  

- Case study: East Asian 

genome evolved Leigh 

Syndrome profile from 

subclinical MT-ND1  

variant alone (Section  

4.4)  

Clinical Utility  

Limited to current-state 

diagnostics  

Proactive intervention: Flags 

high-risk profiles before 

symptom onset 

- Identified 17 enriched 

disease pathways (e.g., 

mitochondrial disorders) 

in evolved genomes 

(Table 5) 
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4.4.1 Interpretation of GA-Based Variant Evolution Simulations Results and 

Associated Visualizations  

(a)      Individuals Simulated and Extent of Simulation: (i) Five individuals were selected to render the 

global ancestry panel representative, spanning African (AFR), European (EUR), East Asian (EAS), South 

Asian (SAS), and Admixed American (AMR) ancestries. The diversity ensures that population structure 

and other evolutionary pressures are represented by the genetic variations included in the simulation. 

(Each genome went through 100 separate Genetic Algorithm (GA) simulations, adding up to a total of 

500 runs. These simulations aimed to model how mutations evolve over generations, helping us identify 

trends in the development of rare variants. For the variant processing and filtering, we began with over 

860,000 variants for each individual, which included common, rare, and private variants sourced from the 

1000 Genomes Project.. (ii) After functional filtering (on annotations, deleteriousness scores, and 

population frequency thresholds), an average of 695,000 variants per individual remained. This is 

consistent with real-world practice where benign or non-coding variants are lower-priority for diagnostic 

analysis.  

 

(b)     Visual Correlation: Figure 2 table show the summary of the  processing pipeline whereas the 

"Consequences" pie chart categorizes the  following filtered variants: (i) 25% synonymous variants (ii) 

15% non-coding transcript variant (iii) 16% stop-gain variants (iv) 9% frame shift variants (v) Remaining 

35% include intronic, UTR, and other regulatory region variants.   

 

(c) New Variant Introduction by GA: (i) GA operations (e.g., crossover, mutation) introduced 12,400 

new variants across all simulations. They were not found in the original input genomes, replicating future 

germline or somatic evolution.(ii) The appearance of variants shows that GA can reconstruct realistic 

future mutational drift, especially relevant in the prediction of the onset of complex disease.  

 

(d) High-Impact Variant Enrichment: On average, 4,980 variants were high-impact (CADD > 20, 

SIFT/PolyPhen deleterious) following simulation. The rightmost "Impact" pie chart shows (i) 69.9% 

Modifier (generally low-impact) (ii) 22% Moderate (missense or regulatory) (iii) 8% High (e.g., frame 

shift, stop-gain) (iv) ~0% Low (removed during preprocessing filtering). This bias towards modifier and 

moderate effects reflects a broad mutational landscape, whereas the high-impact category provides 

valuable targets for downstream rare disease inference. Figure 2, Illustrates the overlap between: GA 

introduced variants (12,400), High-impact variants (4,980) and Disease-matched variants (24% of 

genomes). The quantitative relationships between GA-introduced variants, high-impact variants, and 

disease-matched variants are summarized in Table 7. Overlap counts were derived conservatively: for 

example, 76% of high-impact variants were generated by GA operations, while 40% of disease-matched 

variants were high-impact. The triple-overlap group (680 variants) includes established pathogenic drivers 

such as MT-ND1, which frequently converged in Leigh Syndrome simulations (Section 4.3).  
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Table 7: Comparison of Proposed GA-Based Framework vs. Conventional PRS Models 

Overlap Zone  Count  Calculation Basis  

GA + High-Impact  3,800  76% of high-impact variants introduced 

by GA (conservative  

estimate)  

High-Impact + Disease  1,520  40% of disease variants are high impact  

GA + Disease  920  38% of disease variants were GA 

introduced  

Triple Overlap  680  Core pathogenic drivers (e.g., MTND1 

in Leigh Syndrome)  

  

 

  

Figure 2: Visualization of relationships between GA Genetic Variant 

(e) Pathogenicity Scoring: Evolved genomes possessed a 27.2% greater cumulative pathogenicity 

score than ancestral genomes, i.e., GAs accumulate harmful mutations throughout simulated generations 

a phenomenon consistent with simulated stress or selection pressure in silico.  

 

(f) Convergence Towards Disease Profiles: (i) In EUR and SAS individuals, convergent patterns were 

seen in >60% of simulations, which were concordant with recognized variants in Leigh Syndrome, 

Retinitis Pigmentosa, and other rare conditions in Orphanet/OMIM. (ii) The AFR individual showed 

greater varia-tion and less convergence, in line with greater baseline genetic heterogeneity and 

underrepresentation in variant databases.  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
Variants Exclusive to  

GA Dataset (62%)   
GA - introduced variants  
total 12,400, with 7,680      
exclusive classified as  

“Moderately low    
impact”.   

These unique variants  
mark a significant    

portion, highlighting    
distinct genetic features  

captured only by GA  
sequencing.   

sequencing.   

  

Novel   
High - Impact  

Variants   
Overlap   
(31%)   

Shared & Cor e Disease  
Variants   

The over lap between GA  
and other datasets  

includes 3,000 variants:  
“Novel High - Impact  

Variants”, with 880 core  
pathogenic drivers.   
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(g) Risk Stratification: (i) Simulated genomes with ≥5 matches with pathogenic variants were labeled 

"high-future-risk." On average, 24% of all evolved genomes per individual met this criterion. (ii) This 

result illustrates the potential of the GA model to predict likely future pathogenic status, allowing for 

personalized preventive screening. The visualization and table collectively summarize a new genetic 

simulation toolkit wherein a GA-based evolution model: (a) ingests real-world human variant data, (b) 

evolves and filters them toward high-risk states, (c) identifies informative disease patterns, and (d) offers 

ancestry-aware interpretability. These results validate the effectiveness of soft computing for genomic 

prediction, with the capability to augment rare disease diagnosis beyond static variant annotation.  

4.4.2 Discussion  

By evolving individual genomes through biologically constrained operations (selection, crossover, 

mutation), the model identifies high-risk variant configurations that conventional static methods like 

Polygenic Risk Scores (PRS) fail to anticipate. Key insights include: (a) Dynamic Risk Prediction: The 

GA simulated temporal genomic evolution, revealing that 24% of evolved genomes crossed clinical risk 

thresholds due to accumulating deleterious variants (e.g., 27.2% mean pathogenicity score increase). This 

contrasts sharply with PRS, which overlooks future mutational shifts. (b) Ancestry-Specific  

Patterns: Simulations showed >60% convergence to known disease profiles (e.g., Leigh Syndrome) in 

European and South Asian individuals but <40% con-vergence in African genomes, highlighting the 

impact of database biases on predictive accuracy. (c) Bio-logical Plausibility: Integration of 

multidimensional fitness metrics (pathogenicity, disease association, rarity) ensured realistic trajectories. 

Case studies (e.g., an East Asian individual evolving a Leigh Syndrome profile from a subclinical MT-

ND1 variant) validated clinical relevance. (d) Complementarity to PRS: The framework enhanced PRS 

by: (i) Capturing non-additive epistasis (e.g., 12,400 novel variant combinations generated). (ii) 

Identifying latent high-risk states in genomes with subclinical PRS scores. (iii) Modeling context-specific 

risks tied to evolutionary pathways (e.g., mitochondrial disorders). This thus work bridges a critical gap 

in predictive genomics, offering a proactive tool for early intervention in rare disorders. However, 

technical and translational challenges remain, as discussed below.  
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Figure 3: VEP Web Results Page Showing Summary Pie Charts and Statistics. 

  

5. CONCLUSION  

This study reports a predictive genomic simulation platform developed from Genetic Algorithms (GAs) 

to model individualized mutational routes for preclinical diagnosis of uncommon polygenic disorders. 

With the application of biologically interpretable fitness scores like pathogenicity, known disease 

association, and allelic rarity, the model predicts probable mutational routes to give a dynamic reading 

compared to fixed polygenic risk scores (PRS).The simulations revealed that approximately one in four 

evolved genomes per individual ended up with a high-risk pathogenic profile, which would not have been 

found using conventional PRS approaches. This suggests that time-sensitive, personalized genomic 

evolution models are able to identify latent disease predispositions driven by epistatic and non-additive 

interactions. Furthermore, convergence towards previously established disease profiles (particularly in 

European and South Asian genomes) indicates the clinical practicability of the yielded variant 

combinations, while sub-optimal convergence rates in African genomes identify structural bias in 

available databases that need to be resolved with all due haste. Compared to PRS, this GA-based strategy 

has three main advantages: it considers the future direction of genome evolution; it infers interactions 

between variants other than additive effects; and it enables ancestry-specific interpretation with the 

integration of real-world population data. Such characteristics make it particularly valuable for identifying 

hidden risk in clinically healthy individuals based on prevailing models. By and large, this work lays the 

groundwork for predictive models that not only assess static risk but also predict individual genome 
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evolutionary advancement. Future studies would require extension of this model by adding multiomic 

levels, site-specific mutation rates, and longitudinal phenotype data. Larger expansion cohorts validation 

and incorporation of functional assays will be critical too in utilizing this approach as an effective clinical 

tool. Lastly, this GA-influenced approach offers a promising path to earlier, more accurate, and more 

personalized diagnoses of complex genetic illnesses.  

Limitations to the Study  

One of the limitations of the study is an excessive reliance on European-skewed resources like OMIM and 

Orphanet, which restricted convergence and simulation accuracy in non-European genomes particularly 

African ancestries and undermined realism due to rare variant underrepresentation in public databases. 

Computational constraints also emerged from handling over 860,000 variants per genome per 500 

simulations, while the fitness function oversimplified biological complexity by excluding epigenetic and 

environmental interactions. In addition, biological approximations involved using population-average 

mutation rates (gnomAD) that do not account for individual heterogeneity and down-ranking non-coding 

variants despite their regulatory importance. Lastly, validation scope was restricted through a low sample 

of 5 people, single in silico validation without the presence of functional studies and excluding somatic 

mutations as well as tissue-specific effects from the model system.  

Suggestions for Future Studies  

Future research must concentrate on enhancing ancestry representation by incorporating a broader range 

of genomic datasets, particularly for traditionally underrepresented populations such as those of African 

descent. Additionally, further advancements in model development utilizing multiomic data, individual 

specific mutation rates, and gene-environment interactions will further enhance biological realism. More 

validation cohorts and functional assays will have to be performed to test predictive accuracy.  

Incorporation of somatic mutations, computational efficiency enhancement, and user-friendly clinical tool 

development will also be necessary to make this method clinically relevant and broadly applicable.  
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