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Abstract

Accurate prediction of rare polygenic disorders remains a significant challenge in precision medicine, primarily due
to the fact that they involve a complicated genetic architecture and current computational models are restricted.
Traditional polygenic risk scores (PRS) have additive assumptions and finite cross-population validity and hence
are not appropriate for rare disorders. In this study, a novel GA-based approach is presented that models
individualized forward mutational routes, enabling early identification of risk genomic configurations. Each GA
chromosome represents a binary vector of rare variants from whole-genome sequencing data, and evolutionary
processes are guided by a composite fitness function. The function integrates pathogenicity scores, disease
associations, and population rarity to yield biologically relevant simulations. Using 1000 Genomes Project data, we
simulate 500 mutational trajectories in 500 different individuals. Results determine an average 27.2% increase in
pathogenicity and 38.4% increase in harmful variants, with more than 60% convergence to known disease profiles
in European and South Asian genomes. Approximately 24% of simulated genomes per individual exceed high-risk
thresholds, outperforming PRS in identifying non-additive and epistatic effects. This GA strategy offers a dynamic,
ancestry-aware approach to predicting rare disease risk, broadening the scope of predictive genomics and enabling
earlier, more specific clinical interventions.
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1. INTRODUCTION

Recent advances in whole-genome sequencing have precipitated an astonishing revolution in genomic
medicine, with prospects for tailor-made disease prediction and early intervention. While great advances
have been made in the diagnosis of monogenic disorders, the majority of important health disorders are
polygenic disorders because interactions among many genetic variants across the genome play a role. This
is particularly true for rare polygenic disorders, such as certain early-onset autoimmune diseases,
neurodegenerative syndromes, and psychiatric disorders, which may be difficult to diagnose since the
contributing genetic factors are subtle and complex in nature.

One of the most widely used computational approaches being utilized in the estimation of the polygenic
risk is the Polygenic Risk Score (PRS). PRS uses a combination of the impact of numerous single
nucleotide polymorphisms (SNPs), generally from GWAS data, and estimates an individual's chance of
developing a wide range of diseases. Even though PRS has been very valuable in determining risk levels
for different populations, it also has some severe limitations, more so when it comes to rare and
multifactorial diseases. First of all, many of PRS models assume additive genetic risk factors combine
additively, i.e., they do not account for epistatic interactions-the complicated genetic relationships that
contribute a major part in defining disease risk [1]. Second, PRS merely gives a snapshot of one's current
genetic risk and fails to consider how his or her genome would change in the future as new mutations
arise. Lastly, these models are skewed towards data from European populations and therefore may not be
effective in more diverse or less common groups of genetic variants [2],[3]. These constraints serve to
emphasize a significant need for a more dynamic, person-specific model that can simulate the way a single
individual's genome may vary with potential future mutation, conceivably to a disease state. Such models,
especially for uncommon polygenic diseases, may offer the potential to allow diagnosis and treatment
earlier, with important clinical benefits. In order to satisfy this need, we introduce a Genetic Algorithm
(GA)-based framework that is capable of simulating potential sequences of mutations in individual
genomes. GAs are effective search heuristics motivated by natural evolution particularly fit to navigate
big, nonlinear, and complex spaces like human genomic variation. For our approach, each chromosome
in the GA is an encoding of a string of potential mutations along recognized disease-causing genes.
Through iteratively choosing, recombining via crossover, and mutating under the direction of a
biologically-motivated fitness function, the GA evolves candidate trajectories that converge to plausible
paths to disease expression. The fitness function used in this study includes multiple biological axes to
promote realistic mutation pathways. First, it considers the functional impact of genetic variants, such as
predicted deleteriosity based on established scoring systems. Second, it incorporates gene—disease
association robustness, utilizing manually curated databases like DisGeNET to ensure that simulated
mutations are consistent with known disease-causing loci. Third, it includes allele population frequency,
with less frequent variants being given greater weight since they are more likely to contribute
disproportionately to disease risk.

The main contributions of this study are: (a) A novel GA-based model that predicts future genome
mutation trajectories for rare polygenic disorders. (b) A multi-dimensional fitness function combining
functional and epidemiological features. (c) Validation using anonymized personal genome data from the
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1000 Genomes Project, demonstrating the approach's ability to simulate biologically meaningful mutation
paths. (d) A proof-of-concept showing how dynamic mutation modeling can complement and enhance
static PRS, particularly for rare disease risk prediction. Our work aligns with recent efforts to improve
diagnostic yield in rare diseases. For example, the Deciphering Developmental Disorders (DDD) study
successfully diagnosed numerous children via genome-wide sequencing in 2023 [4],[8],[5]. However,
unlike these studies which focus on current variant profiles the method used in this study simulates future
mutational evolution, offering a novel, forward looking dimension to personalized risk modeling. The
remainder of this paper is organized as follows. Section 2 reviews related work in polygenic risk models
and GA applications in genomics. Section 3 describes our proposed methodology, including data
preprocessing, chromosome encoding, and fitness function design. Section 4 presents experimental results
and validation. Section 5 discusses implications, limitations, and future directions, and Section 6
concludes the paper.

2. LITERATURE REVIEW

The field of genomic diagnosis has experienced incredible growth in the recent past due to technological
advancements in high-throughput sequencing and the use of computational methods in clinical decision
making. The most significant among these computational tools are the Polygenic Risk Scores (PRS),
which aim to quantify an individual's risk to complex diseases by summing up the effects of numerous
common genetic variations. Despite widespread application in the risk modeling of diseases such as
cardiovascular disease and type 2 diabetes, PRS methods have also shown accuracy and applicability
limitations, particularly for rare polygenic disorders [2], [7].

2.1 Limitations of Polygenic Risk Scores

One of the key frailties of traditional PRS models is population bias. Most of the models have been trained
on genome-wide association study (GWAS) data from individuals of European ancestry. This lim-its their
transferability and usefulness across genetically diverse [6], [8]. Also, PRS models assume additive effects
across SNPs, circumventing intricate epistasis interactions that may contribute importantly to disease risk,
especially in undiagnosed or rare disease. A second challenge is their static nature. Most traditional PRS
models examine current-genomic data and ignore the temporal dynamics of genetic variation, such as de
novo mutations and somatic changes that can happen within a lifetime. For rare diseases (where distinctive,
multi-locus combinations may arise de novo or through less common mutational events) this static
examination can lead to missed diagnoses or false negatives [9]. Although machine learning (ML) and
deep learning (DL) approaches have been suggested to enhance PRS models e.g., convolutional neural
networks learning nonlinear SNP interactions (Chen et al., 2024), they too are limited by their dependence
on known variant profiles and their inability to model future genomic pathways.
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2.2 Genetic Algorithms in Biomedical Research

Genetic Algorithms (GAs) are heuristics for optimization, inspired by evolutionary biology, which employ
mechanisms such as selection, mutation, and crossover to iteratively improve candidate solutions. In their
very nature, they are well adapted to high-dimensional, non-linear search spaces, like those typical of a
vast number of genomic problems. GAs has found application in biomedical informatics for feature
selection in gene expression, disease classification, and biomarker identification [9].

[10] for instance, presented an approach called FCS-Net, a Feature Co-selection Network that uses GAs
to select systematically heterogeneous sets of genetic variables. These sets facilitate modeling gene—gene
interaction and genetic heterogeneity in colorectal cancer GWAS data. Genetic Algorithms in Biomedical
Research has over time had a steady build. [11] employed a GA to select informative biomarkers from
high-dimensional proteomic profiles. The GA was coupled with a model of classification, and this
improved the prediction performance by 12% compared with standard feature selection methods in
discriminating among patient subgroups in various states of disease. [12] created TPOT-MDR, utilizing
Genetic Programming (a collection of evolutionary algorithms derived from GAs) to build optimal
analysis pipelines with Multifactor Dimensionality Reduction (MDR). TPOT-MDR detected higher-order
interactions in simulated and real-world complex disease data better than conventional methods. [13]
created a GA-optimized artificial neural network (ANN) for MRI feature analysis in Alzheimer's patients.
Their GA-based approach resulted in a 96% classification accuracy as opposed to manually tuned
networks, with specific success in differentiating between early-stage Alzheimer's and age-matched
controls. [14] engineered a hybrid method based on a mix of genetic algorithms with support vector
machines (GA-SVM) for the identification of a smaller set of SNPs linked with chemotherapy response
in breast cancer. The pipeline improved interpretability and reduced false positives with 15% improvement
in Flscore over baseline classifiers. [15] used GAs to parameterize Boolean network models of gene
regulation in melanoma treatment. It resulted in networks that closely matched patient response patterns
seen in real-world data, and increased prediction accuracy from 72% to 88% for sensitivity to
immunotherapy on multiple datasets.

2.3 Rare Polygenic Disorders and Modeling Challenges

Rare diseases affect over 300 million people globally, and the majority has a genetic basis. Polygenic rare
diseases, however, are very hard to detect because of their multifactorial etiology, often involving rare
combinations of common variants, low-frequency mutations, and complex epistatic interactions [19].
Classical GWAS approaches lack the resolution to capture such configurations, especially when
individual-level data is sparse or underrepresented. Studies like the Deciphering Developmental Disorders
(DDD) study have made significant progress in early-onset rare disorder diagnosis through genome-wide
sequencing [5],[9]. Yet, even with these studies, the focus remains on variants that exist in the present,
rather than tracing the evolutionary trajectory of a genome through time. And this is where there is a
fundamental gap in predictive modeling, particularly for individuals who are yet to display symptoms but
are genetically predisposed. Furthermore, most variant pathogenicity prediction tools (e.g., CADD, SIFT,
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PolyPhen-2) assess the likelihood of disease given that a mutation already exists, as opposed to the
likelihood of future mutation patterns that will result in pathology.

2.4 Related Work

Recent advances in federated learning [23] have improved multi-population risk modeling but remain
constrained by static genomic snapshots. Similarly, DNA language models [24] show promise in rare
disease gene ranking yet lack temporal simulation capabilities. Spatial transcriptomics approaches [25]
capture micro environmental dynamics but ignore germline mutational trajectories. While nano pore
sequencing [19] enhances variant detection, it cannot prospectively model pathogenic pathways. Even
CRISPR-guided screens (He et al., 2022) struggle with polygenic epistasis prediction. Genetic Algorithms,
through their evolution based paradigm, represent an interesting prospect for simulating individual
mutational trajectories, capitalizing on real-world data like the 1000 Genomes Project [25] to provide
biologically plausible constraints. To the best of our knowledge, no previous published study has
employed a GA-based approach to simulate individual-specific future genomic states for the prediction
of rare polygenic disease. This is an omission in method, and an opportunity for this research to offer a
new, and potentially impactful, framework in the field of predictive genomics. Table 1 sets out these and
more related studies and their short-comings in Predicting Multi-Gene Mutation Paths.

Table 1: Current Diagnostic Methods in Predicting Multi-Gene Mutation Paths

Diagnostic Ke Suggested
Study (Year) Method Disease Context .. y. Improvement
Limitations
Evaluated s
Missed 18% of
pathogenic
Whole-exome structural Inteerate ontical
[29] sequencing Cancer (solid tumors) | variants; poor enfme m: o
(WES) non-coding £ PpInE.
variant
resolution.
32% of rare
th i .
Targeted gene Rare diseases ba ogemc Dynamic panel
[30] . . . mutations fell . .
panels (inherited disorders) . expansion via Al.
outside panel
coverage.
Poor
generalizability
Machine learning for non European | Ancestry balanced
[31] Pan-cancer . .
(SNP-based) ancestries (AUC | training datasets.

dropped by 0.2—
0.3).
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High false
positives in Functional
[27] CRISPR screens | Cancer (BRCA- polygenic .
proteomics
+ WES related) contexts (e.g., validation
BRCA1/2 '
commutations).
Overlooked
40% of rare gene . ]
[32] workl/pa.thway Metastatic cancer hteractions in Patlent'jerlv(eidl
analysis clonal evolution. | ©r&anoid models.
False negatives in
N t ith
[33] Liquid biopsy mors “./1 Error corrected
Cancer (early-stage) <5% variant .
(ctDNA) sequencing.
allele
frequency.
Could not
lve clonal Multi- 1 single-
Single-cell Hematologic rejso ve C on.a ulti-moda Sl.n ge
[34] . . hierarchies in cell + chromatin
DNAseq malignancies
25% of samples | assays.
due to dropout.
Failed to Non-linear
. predict epistasis | ML models with
Polygenic risk . .
[35] scores (PRS) Pan-cancer (e.g., TP53 + interaction terms.
KRAS
interactions).
15% higher
R indel t
[26] Nanopore .are %n e crror rates Hybrid sequencing
. diseases (neuro in
sequencing (ONT + short read).
developmental) homopolymers
vs. [llumina.
Poor
int tability;
: rieTpretabiitys Explainable Al
[36] Decp learning Cancer (pediatric) clinicians (e.g., attention
(variant calling) P rejected 30% of m;i;)

Al-predicted
mutations.
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Limited to
. transcript-level | Combined spatial
[25] tSpanal. . Ce.mcer (n'lmor t data: couldn’t proteomics
ranscriptomics microenvironments) infer spatial (e.2.. GeoMx).
driver mutations.
Accuracy Harmonized
23] dropped 12% pipelines +
Federated learning | Multi-disease due to inter-site | federated transfer
data learning.
heterogeneity.
3. METHODOLOGY

3.1 Dataset Selection and Preparation

This study used the whole-genome variant data from the 1000 Genomes Project [25], which includes VCF-
formatted genotypes for 2,504 individuals across 26 global. This dataset was accessed via public FTP,
requiring no registration or ethical clearance for use in methodological research. To ensure relevance to
rare disorders, we selected a subset of individuals with high-quality sequencing data and annotated variant
profiles. Variant annotation was per-formed using the Ensembl Variant Effect Predictor (VEP), providing
gene impact scores, allele frequencies, and known pathogenicity flags.

3.2 Genomic Feature Encoding

For each individual, a variant vector was constructed from the SNP positions and corresponding genotypes.
The variants were encoded in binary format (presence/absence of alternative allele) and typed depending
on their mapped gene or control region. Only the minor variants (minor allele frequency < 0.01) were
retained to limit the simulation to rare disorder-related mutational spaces. This encoding generated a high-
dimensional binary vector for each genome, which serves as the initial chromosome in the GA procedure.

3.3 Genetic Algorithm Design

To simulate forward mutational evolution of individual genomes for rare polygenic disorder prediction,
we developed a customized Genetic Algorithm (GA) framework. The algorithm iteratively explores
plausible future variant configurations that could drive the genome toward a high-risk disease state. The
core innovation lies in the multi-dimensional fitness function, which now explicitly integrates functional,
epidemiological, and population-level features using weighted components and z-score normalization.
Each chromosome in the GA represents a binary vector, indicating the presence or absence of rare variants
(MAF < 0.01) across the genome. Variants are grouped by gene or regulatory region, and the vector is
initialized from the individual’s real genomic data (sourced from the 1000 Genomes Project). An initial
population of 100 chromosomes is generated by introducing small random perturbations (i.e., simulated



8 International Journal of Emerging Multidisciplinaries

mutations) to the baseline genome. These mutations follow gene-specific mutation rates obtained from
gnomAD, ensuring biologically plausible variation.

The fitness function evaluates how likely a chromosome is to represent a future pathogenic state. It
integrates three key components: (a) Pathogenicity Score (pathogenic score). Computed from aggregate
deleteriousness metrics such as CADD and SIFT scores. Reflects the predicted functional damage of
accumulated variants. (b) Disease Overlap Score (disease overlap score): Quantifies how many
simulated variants match known pathogenic loci cataloged in databases like OMIM and Orphanet. (c)
Rarity Score (rarity score): Captures population-level rarity by computing the mean (1 — MAF) for all
variants in the chromosome. Rare variants are favored. All three components are normalized using zscore
standardization followed by min-max rescaling to [0, 1] to ensure comparability. The composite fitness
score is calculated as a weighted sum:

Fitness =w_ 1. pathogenic score +w_2. disease overlap score +w_3.rarity score Where:

w_1=0.5 (pathogenicity),

w_2=0.3 (disease association),

w_3=0.2 (rarity)

These weights reflect a balanced emphasis on functional impact and known clinical relevance, while still
accounting for population-based rarity patterns. Five subjects of diverse ancestral origins (African,
European, East Asian, South Asian, and Admixed American) were selected to evaluate the model
performance on different genomic architectures. All genomes of the subjects were processed using the
pipeline described in Section 3, and for each subject's genome, 100 runs were executed, evolving for 200
GA generations or until convergence through early stopping. After GA evolution, chromosomes are
classified as high-future-risk profiles if they meet the following thresholds: (a) Pathogenicity score (raw,
unnormalized) > 0.8 (b) Disease variant match count > 5 (c) Composite fitness score > 0.7 This tricriteria
ensures that flagged genomes not only carry functionally damaging variants but also align with established

rare disease markers. The GA runs for up to 200 generations, or until the population’s fitness
distribution converges (i.e., no significant improvement across five consecutive generations). The

developed model is as shown figure 1 while the algorithm for the developed model is as shown below:

Algorithm: Personalized GA-Based Genome Risk Profiling Simulation CONSTANTS:
w_pathogenic — 0.5

w_disease assoc — 0.3
W_rarity — 0.2
population _size : INTEGER

max_generations : INTEGER
mutation_rate : FLOAT
VARIABLES:
population : LIST of Genome Vectors
new_population : LIST of GenomeVectors
raw_pathogenic, raw_disease overlap, raw_rarity : ARRAY of FLOAT
fitness_scores : LIST of FLOAT FUNCTION z_score(x):
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RETURN (x - MEAN(x)) / (STANDARD_DEVIATION(x) + 1e-8) FUNCTION
min_max(x):
RETURN (x - MIN(x)) / (MAX(x) - MIN(x) + 1e-8)
FUNCTION is_high_risk(chromosome, pathogenic score, disease match count, fitness score):
RETURN (pathogenic_score > 0.8) AND

(disease match count > 5) AND
(fitness_score > 0.7)
// Initialize population

population «— EMPTY LIST FOR i «— 1 TO
population_size: mutated vector <«
introduce random_mutations()

APPEND mutated vector TO population
// ' Evolutionary loop

FOR generation <— 1 TO max_generations:
/I Raw score calculation

raw_pathogenic «— EMPTY ARRAY
raw_disease overlap «— EMPTY ARRAY
raw_rarity < EMPTY ARRAY FOR
EACH chromosome IN population:
APPEND compute pathogenicity(chromosome) TO raw_pathogenic
APPEND match to disease database(chromosome) TO raw disease overlap // Raw count
APPEND compute rarity(chromosome) TO raw_rarity // e.g., mean(1 - MAF)

// Normalization norm_pathogenic —
min_max(z_score(raw_pathogenic)) norm_disease overlap «—
min_max(z_score(raw_disease_overlap)) norm_rarity <—

min_max(z_score(raw_rarity))

// Fitness calculation  fitness_scores
«— EMPTY LIST FOR i «— 1 TO
LENGTH(population):

fitness <«  (w_pathogenic X  norm pathogenic[i] +
w_disease assoc x norm_disease overlap[i] +

Ww_rarity X norm_rarity[i])

APPEND fitness TO fitness_scores //" Selection and
reproduction  selected parents «— tournament selection(population,
fitness_scores)

new_population < EMPTY LIST

WHILE LENGTH(new_ population) < population_size:
parentl, parent2 « select two_parents(selected parents) child
<« crossover(parentl, parent2) child <« mutate(child,
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mutation_rate) APPEND child TO new population
population «— new_population IF has_converged(fitness_scores):
BREAK

// High-risk identification
FOR EACH chromosome IN population WITH INDEX
i: IF  is_high risk(chromosome,
raw_pathogenic(i], raw_disease overlapl[i],
fitness_scores[i]):

save_evolved profile(chromosome)

END ALGORITHM

‘ Raw Variant Data Ensembl VEP

Annotation of Rare Variants

- — 1
Application of GA

Selection  x-over  Mutation R Genomic Vector
" Encoding

i X : J [0,1,0,1,0,1]

A\ 4

Risk Assessment and Interpretation

N ~ . .
Evolved > Routlne.Momtorlr.lg for
Rare Disease Variant
Genomes
¥ \/_

Figure 1: Schematic overview of the proposed GA-based personalized mutational risk prediction
pipeline.

The figure Ishows the pipeline in five stages: (a) Input Genotype Selection: Raw variant data is taken
from the 1000 Genomes Project. (b) Variant Filtering & Annotation: Rare variants (MAF < 0.01) are
retained and annotated using Ensembl VEP, filtering out low-confidence sites. (c) Genomic Vector
Encoding: The individual's genome is encoded into a binary vector representing variant presence (d)
Genetic Algorithm Simulation: (i) Initial population is created by introducing small perturbations. (ii)
Fitness is evaluated based on deleteriousness and match with rare disorder variants. (iii) Evolution occurs
via selection, crossover, and mutation. () Risk Assessment & Interpretation: Evolved genomes are scored
and matched against rare disease variant signatures for future-risk modeling.



A Genetic Algorithm-Driven Personalized Genome Mutation Pathway Predictor 11

3.4 Filtering and Validation of Evolved Genomes

Emergent variant profiles were subjected to a disease-specific rare variant database derived from

[34], Online Mendelian Inheritance in OMIM [35], and existing rare disorder Genome-Wide Association
Study (GWAS) catalogs. Simulated genomes with >5 variants mapping to known or proband pathogenic
loci (with no protective variant suppressors) were defined as high-risk. To avoid the build-up of artifacts,
we applied an internal noise filter that removed variants occurring in repetitive, poorly aligned areas or
designated as low quality in the original 1000 Genomes Variant Call Format (VCF) metadata. This helped
to produce biologically plausible simulations and reduce the risk of false-positive risk attributions.

4. RESULTS AND DISCUSSION

4.1 Sample Selection for Model Evaluation

To evaluate the model's performance across diverse genomic architectures, we selected representative
samples from four major global populations using the 1000 Genomes Project dataset. These individuals
encompass distinct ancestral backgrounds spanning African, European, East Asian, and South Asian super
populations, enabling targeted assessment of genetic variation. Key identifiers and population metadata
for the selected samples are detailed in Table 2.

Table 2: Selected Individual Samples for Assessment of Model’s Performance across Different

Genomic Architectures
Studv ID 1000 Genomes S Populati Population Cod Ancestral
udy Sample ID uper Population opulation Code Background
African  (Yoruba,
IND-01 NA19240 AFR YRI ..
Nigeria)
IND-02 HG00342 EUR CEU Buropean — (Utah,
i USA)
East Asian (Han
IND-03 HG00514 EAS CHB . .
Chinese, Beijing)
IND-04 NA20845 SAS GIH South Asian
) (Gujarati, India)

4.2 Rare Variant Accumulation Trends

Across simulations, a progressive accumulation of deleterious variants in regions associated with rare dis-
orders was observed. On average: (a) The number of high-impact rare variants (CADD score > 20) in-
creased by 38.4% over the GA lifespan. (b) The final evolved genomes showed a mean pathogenicity
score increase of 27.2% compared to the original input genome. (c¢) 3 out of 5 individuals exhibited
convergence toward variant clusters associated with specific disease pathways (e.g., mitochondrial
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dysfunction, neuro-developmental syndromes). This confirms that the GA effectively simulates plausible
mutational drift biased toward clinically relevant regions.

Table 3: Summary of Deleterious Variant Accumulation and Disease Pathway Convergence

Metric

Value/Observation

Notes

Increase in high-impact rare
variants (CADD > 20)

+38.4% average increase across
simulations

Indicates significant
accumulation of deleterious
variants

Increase in mean pathogenicity
score

+27.2% compared to original
genome

Measured using aggregate scores
across all variant sites

Number of individuals showing
convergence

3 out of 5 individuals

Convergence toward variant
clusters linked to specific rare

disorders

Example disease pathways
observed in convergence

Mitochondrial dysfunction,
neurodevelopmental syndromes

Based on matched variant profiles
in simulated genomes

Simulation termination criteria

200
convergence

generations or fitness

Applied uniformly across all

simulations

Simulations per individual

100

Ensures statistical robustness

across GA runs

4.3 Convergence with Known Disease-Linked Profiles

We contrasted expert genomes with a filtered database of rare disease-associated variant patterns listed in
the Orphanet and OMIM repository. The following patterns were found: (a) Convergent evolution in >60%
of simulations for South Asian and European ancestry patients was consistent with known profiles of
disorders such as Leigh Syndrome [36] and Retinitis Pigmentosa [37] (b) More heterogeneous and less
convergent were the simulations of the African individual, as expected with greater genetic heterogeneity
and fewer African alleles within existing databases. (c)Simulated genomes with >5 known pathogenic
variant hits were classified as "high-future-risk" profiles. On average, 24% of evolved genomes per
individual fell into this group.
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Table 4: Convergence and Risk Categorization of Evolved Genomes

. % Simulations Example Disorders .
Population Group . Observations & Notes
Showing Convergence | Matched
Strong convergence to
Leigh Synd known disease-
European (EUR) >60% clgn - SYICIome, . :
Retinitis Pigmentosa associated variant
clusters
Leich Svnd Similar high
South Asian (SAS) >60% elg . yharome, convergence as
Retinitis Pigmentosa . .
European simulations
Greater mutational
diversity, lower
African (AFR) <40% Variable ergence, likely due to
database
underrepresentation
o Moderate convergence,
. Retinitis Pigmentosa, .
East Asian (EAS) ~50% variation across
MELAS Syndrome . .
simulations
Variable  convergence
Admixed  American 45% Mitochondrial and | patterns, possibly due to
(AMR) ° metabolic disorders mixed ancestry allele
representation
. : Simulated fut
High-Future-Risk . rmtate . Hre
o >5 known pathogenic | genomes exceeding
Genomes (avg. across| 24% per individual . .. . .
I variant matches clinical diagnostic
all groups) thresholds

4.4 Comparative Analysis between GA-Based Framework and PRS

Compared with conventional polygenic risk score (PRS) models (based on current variant status), our GA-
based method demonstrated significant superiority over conventional PRS models, starting with its
predictive understanding: while PRS provides a snapshot measurement of current variant status, our
method recognized dynamically those persons whose genomic states in the future could surpass relevant
risk thresholds through simulated evolutionary mutation. Further, it showed increased sensitivity by
projecting increased future risk when conventional PRS scores remained subclinical, disclosing
underlying perils through theoretical mutational trajectories that would go unnoticed by static models.
Finally, the simulations exhibited contextual flexibility by showing how some rare disease predispositions
occur only with specific evolutionary variant shifts, such as epistatic interactions or unusual pairs of
mutation that static models cannot predict through their very temporal nature. Table 5 provides the
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summary statistics from GA-based variant evolution simulations while Table 6 shows the comparison of
Proposed GA-Based Framework to Conventional PRS Models.

Table 5: Summary Statistics from GA-Based Variant Evolution Simulations

Category Count / Percentage Description
F di tral
Individuals simulated 5 o e aneesta
backgrounds
Simulations per individual 100 Total of 500 GA simulations
Includ d
Total variants processed (initial) | 860,000+ peludes  common, - fare, - al
private variants
Filtered based on functional
i ini i A .
;firla.nts remaining - after - G 695,000 annotations, SIFT/PolyPhen,
iltering MAF
Novel variants introduced by 12.400 Mutational operators generated
GA ’ previously unseen combinations
High-impact variants (CADD > 4,980 Deleterious variants flagged for
20) ’ further interpretation
Average N increase in 127 29 Compared to baseline input
pathogenicity score genomes
T ,
Simulated genomes labeled Genomes  with - 25 pathogenic
. . 24% matches to OMIM/Orphanet
“high-risk” .
disease profiles
) ) Frequent alignment with known
> 0,
C.onlver.gent simulations (260% EUR & SAS populations rare disease clusters (e.g., Leigh
similarity)
syndrome)
Uni di th Includes neurodevelopmental,
mdue isease PaHIWAYS| 4 pathways metabolic, and mitochondrial
enriched .
disorders
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Table 6: Comparison of Proposed GA-Based Framework vs. Conventional PRS Models

Feature

Conventional PRS Models

Proposed GA-Based

Framework

Key Results/Evidence
from Study

Temporal Scope

Static assessment of

Dynamic simulation of

future mutational

- Simulated 27.2%
average increase in

pathogenicity score over

current variant status evolution (200 .
generations) baseline genomes
(Table 5)
- 24% of evolved
Estimates current risk | Identifies individuals | genomes flagged as

Predictive Capability only; no future trajectory | whose future variant states | high-future-risk (=5
modeling cross risk thresholds pathogenic variant
matches) (Table 4/5)
- Detected risk in
_ . e European/S. Asian
Subclinical scores for | Higher  sensitivity  to P :
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4.4.1 Interpretation of GA-Based Variant Evolution Simulations Results and
Associated Visualizations

(a) Individuals Simulated and Extent of Simulation: (i) Five individuals were selected to render the
global ancestry panel representative, spanning African (AFR), European (EUR), East Asian (EAS), South
Asian (SAS), and Admixed American (AMR) ancestries. The diversity ensures that population structure
and other evolutionary pressures are represented by the genetic variations included in the simulation.
(Each genome went through 100 separate Genetic Algorithm (GA) simulations, adding up to a total of
500 runs. These simulations aimed to model how mutations evolve over generations, helping us identify
trends in the development of rare variants. For the variant processing and filtering, we began with over
860,000 variants for each individual, which included common, rare, and private variants sourced from the
1000 Genomes Project.. (ii) After functional filtering (on annotations, deleteriousness scores, and
population frequency thresholds), an average of 695,000 variants per individual remained. This is
consistent with real-world practice where benign or non-coding variants are lower-priority for diagnostic
analysis.

(b) Visual Correlation: Figure 2 table show the summary of the processing pipeline whereas the
"Consequences" pie chart categorizes the following filtered variants: (i) 25% synonymous variants (ii)
15% non-coding transcript variant (iii) 16% stop-gain variants (iv) 9% frame shift variants (v) Remaining
35% include intronic, UTR, and other regulatory region variants.

(©) New Variant Introduction by GA: (i) GA operations (e.g., crossover, mutation) introduced 12,400
new variants across all simulations. They were not found in the original input genomes, replicating future
germline or somatic evolution.(i1) The appearance of variants shows that GA can reconstruct realistic
future mutational drift, especially relevant in the prediction of the onset of complex disease.

(d) High-Impact Variant Enrichment: On average, 4,980 variants were high-impact (CADD > 20,
SIFT/PolyPhen deleterious) following simulation. The rightmost "Impact" pie chart shows (i) 69.9%
Modifier (generally low-impact) (i1) 22% Moderate (missense or regulatory) (iii) 8% High (e.g., frame
shift, stop-gain) (iv) ~0% Low (removed during preprocessing filtering). This bias towards modifier and
moderate effects reflects a broad mutational landscape, whereas the high-impact category provides
valuable targets for downstream rare disease inference. Figure 2, Illustrates the overlap between: GA
introduced variants (12,400), High-impact variants (4,980) and Disease-matched variants (24% of
genomes). The quantitative relationships between GA-introduced variants, high-impact variants, and
disease-matched variants are summarized in Table 7. Overlap counts were derived conservatively: for
example, 76% of high-impact variants were generated by GA operations, while 40% of disease-matched
variants were high-impact. The triple-overlap group (680 variants) includes established pathogenic drivers
such as MT-ND1, which frequently converged in Leigh Syndrome simulations (Section 4.3).
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Table 7: Comparison of Proposed GA-Based Framework vs. Conventional PRS Models

Overlap Zone Count Calculation Basis

GA + High-Impact 3,800 76% of high-impact variants introduced
by GA (conservative
estimate)

High-Impact + Disease 1,520 40% of disease variants are high impact

GA + Disease 920 38% of disease variants were GA
introduced

Triple Overlap 680 Core pathogenic drivers (e.g., MTNDI1
in Leigh Syndrome)

Variants Exclusive to
GA Dataset (62%)
GA-introduced variants
total 12,400, with 7,680
exclusive classified as
“Moderately low
impact”.

These unique variants
mark a significant
portion, highlighting
distinct genetic features
captured only by GA
sequencing.
sequencing.

Novel
High-Impact
Variants
Overlap
(31%)

Shared & Core Disease
Variants
The overlap between GA
and other datasets
includes 3,000 variants:
“Novel High-Impact

Variants”, with 880 core
pathogenic drivers.

Figure 2: Visualization of relationships between GA Genetic Variant

(e) Pathogenicity Scoring: Evolved genomes possessed a 27.2% greater cumulative pathogenicity
score than ancestral genomes, 1.e., GAs accumulate harmful mutations throughout simulated generations
a phenomenon consistent with simulated stress or selection pressure in silico.

)] Convergence Towards Disease Profiles: (i) In EUR and SAS individuals, convergent patterns were
seen in >60% of simulations, which were concordant with recognized variants in Leigh Syndrome,
Retinitis Pigmentosa, and other rare conditions in Orphanet/OMIM. (ii) The AFR individual showed
greater varia-tion and less convergence, in line with greater baseline genetic heterogeneity and

underrepresentation in variant databases.
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(2) Risk Stratification: (i) Simulated genomes with >5 matches with pathogenic variants were labeled
"high-future-risk." On average, 24% of all evolved genomes per individual met this criterion. (i1) This
result illustrates the potential of the GA model to predict likely future pathogenic status, allowing for
personalized preventive screening. The visualization and table collectively summarize a new genetic
simulation toolkit wherein a GA-based evolution model: (a) ingests real-world human variant data, (b)
evolves and filters them toward high-risk states, (c) identifies informative disease patterns, and (d) offers
ancestry-aware interpretability. These results validate the effectiveness of soft computing for genomic
prediction, with the capability to augment rare disease diagnosis beyond static variant annotation.

4.4.2 Discussion

By evolving individual genomes through biologically constrained operations (selection, crossover,
mutation), the model identifies high-risk variant configurations that conventional static methods like
Polygenic Risk Scores (PRS) fail to anticipate. Key insights include: (a) Dynamic Risk Prediction: The
GA simulated temporal genomic evolution, revealing that 24% of evolved genomes crossed clinical risk
thresholds due to accumulating deleterious variants (e.g., 27.2% mean pathogenicity score increase). This
contrasts sharply with PRS, which overlooks future mutational shifts. (b) Ancestry-Specific

Patterns: Simulations showed >60% convergence to known disease profiles (e.g., Leigh Syndrome) in
European and South Asian individuals but <40% con-vergence in African genomes, highlighting the
impact of database biases on predictive accuracy. (c) Bio-logical Plausibility: Integration of
multidimensional fitness metrics (pathogenicity, disease association, rarity) ensured realistic trajectories.
Case studies (e.g., an East Asian individual evolving a Leigh Syndrome profile from a subclinical MT-
ND1 variant) validated clinical relevance. (d) Complementarity to PRS: The framework enhanced PRS
by: (i) Capturing non-additive epistasis (e.g., 12,400 novel variant combinations generated). (ii)
Identifying latent high-risk states in genomes with subclinical PRS scores. (ii1) Modeling context-specific
risks tied to evolutionary pathways (e.g., mitochondrial disorders). This thus work bridges a critical gap
in predictive genomics, offering a proactive tool for early intervention in rare disorders. However,
technical and translational challenges remain, as discussed below.
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Summary statistics: Consequences Impact

Individuals simulated 5

Simulations per individual
(including common, rare 100

and private variants) 699%
Variants remaining  §95.000
after filtering .

@ convonymous_variant MODIFIER
Novel variants 12.400 @ non_coc.inns_valant . ® MODERATE
. ® stop_gained variant @ HIGH
introduced : :

® frameshift_variant ® LOowW

® Others

High-impact variants  4.980

Figure 3: VEP Web Results Page Showing Summary Pie Charts and Statistics.

5. CONCLUSION

This study reports a predictive genomic simulation platform developed from Genetic Algorithms (GAs)
to model individualized mutational routes for preclinical diagnosis of uncommon polygenic disorders.
With the application of biologically interpretable fitness scores like pathogenicity, known disease
association, and allelic rarity, the model predicts probable mutational routes to give a dynamic reading
compared to fixed polygenic risk scores (PRS).The simulations revealed that approximately one in four
evolved genomes per individual ended up with a high-risk pathogenic profile, which would not have been
found using conventional PRS approaches. This suggests that time-sensitive, personalized genomic
evolution models are able to identify latent disease predispositions driven by epistatic and non-additive
interactions. Furthermore, convergence towards previously established disease profiles (particularly in
European and South Asian genomes) indicates the clinical practicability of the yielded variant
combinations, while sub-optimal convergence rates in African genomes identify structural bias in
available databases that need to be resolved with all due haste. Compared to PRS, this GA-based strategy
has three main advantages: it considers the future direction of genome evolution; it infers interactions
between variants other than additive effects; and it enables ancestry-specific interpretation with the
integration of real-world population data. Such characteristics make it particularly valuable for identifying
hidden risk in clinically healthy individuals based on prevailing models. By and large, this work lays the
groundwork for predictive models that not only assess static risk but also predict individual genome
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evolutionary advancement. Future studies would require extension of this model by adding multiomic
levels, site-specific mutation rates, and longitudinal phenotype data. Larger expansion cohorts validation
and incorporation of functional assays will be critical too in utilizing this approach as an effective clinical
tool. Lastly, this GA-influenced approach offers a promising path to earlier, more accurate, and more
personalized diagnoses of complex genetic illnesses.

Limitations to the Study

One of the limitations of the study is an excessive reliance on European-skewed resources like OMIM and
Orphanet, which restricted convergence and simulation accuracy in non-European genomes particularly
African ancestries and undermined realism due to rare variant underrepresentation in public databases.
Computational constraints also emerged from handling over 860,000 variants per genome per 500
simulations, while the fitness function oversimplified biological complexity by excluding epigenetic and
environmental interactions. In addition, biological approximations involved using population-average
mutation rates (gnomAD) that do not account for individual heterogeneity and down-ranking non-coding
variants despite their regulatory importance. Lastly, validation scope was restricted through a low sample
of 5 people, single in silico validation without the presence of functional studies and excluding somatic
mutations as well as tissue-specific effects from the model system.

Suggestions for Future Studies

Future research must concentrate on enhancing ancestry representation by incorporating a broader range
of genomic datasets, particularly for traditionally underrepresented populations such as those of African
descent. Additionally, further advancements in model development utilizing multiomic data, individual
specific mutation rates, and gene-environment interactions will further enhance biological realism. More
validation cohorts and functional assays will have to be performed to test predictive accuracy.
Incorporation of somatic mutations, computational efficiency enhancement, and user-friendly clinical tool
development will also be necessary to make this method clinically relevant and broadly applicable.
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