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Abstract  

Breast cancer continues to be a major global health challenge, necessitating the development of 

accurate and reliable diagnostic systems. This study presents a comparative evaluation of multiple 

machine learning classification models aimed at enhancing breast cancer detection. Three feature 

selection techniques which are Principal Component Analysis (PCA), Pearson Correlation 

Coefficient (PCC), and Backpropagation Neural Networks (BNN) were employed to reduce 

dimensionality and extract relevant features. The performance of six classifiers which are Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), Decision Tree 

(DT), Naïve Bayes (NB), and Artificial Neural Network (ANN) was analyzed based on accuracy, 

precision, recall, specificity and f1-Score. Results show that among the evaluated classifiers, 

Random Forest and Support Vector Machine (SVM) consistently delivered the highest 

performance, with Random Forest achieving up to 98.8% accuracy and SVM up to 98.0%, 

particularly when trained on features selected through Backpropagation Neural Networks (BNN). 

K-Nearest Neighbors (KNN) and Artificial Neural Network (ANN) also demonstrated strong 

results, outperforming traditional models like Logistic Regression and Decision Tree in most 

scenarios. These outcomes underscore the superior classification capabilities of non-linear and 

ensemble-based models in handling complex feature interactions, affirming their suitability for 

accurate and robust breast cancer detection.  

  

Keywords: Breast Cancer Classification; Machine Learning Models; Predictive Analysis; Feature 
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1. INTRODUCTION 

Breast cancer remains one of the most frequently diagnosed cancers and is the leading cause of cancer-

related deaths among women globally [1]. It is particularly prevalent in regions such as Eastern Europe 

and Africa, where mortality rates are disproportionately high [2]. According to the World Health 

Organization (WHO), more than 2.3 million women were diagnosed with breast cancer in 2020, 

resulting in approximately 685,000 deaths. Furthermore, by the end of that year, about 7.8 million 

women had been diagnosed within the preceding five years, making it the most commonly diagnosed 

cancer worldwide. Alarmingly, the number of cancer diagnoses is projected to rise to 19.3 million by 

2025 [3].  

 

Early and accurate diagnosis is essential to improving survival rates. While five-year survival in early-

stage breast cancer can be as high as 81%, this drops drastically to 35% in late-stage cases [4]. 

Conventional diagnostic methods, including mammography, MRI, and ultrasound, although widely 

used, are limited by factors such as high costs, image quality issues, human error, and reduced 

sensitivity in dense breast tissues [5],[6],[7]. These limitations underscore the need for automated, 

accurate, and cost-effective diagnostic systems.  

 

With the rapid growth of medical data and the increasing complexity of diagnostic processes, Machine 

Learning (ML) has emerged as a promising tool for disease diagnosis, particularly in breast cancer 

research [8]. ML techniques can uncover hidden patterns in large datasets and assist clinicians in 

making more informed and consistent decisions [9]. Various ML classifiers—such as Support Vector 

Machines (SVM), K-Nearest Neighbors (KNN), Artificial Neural Networks (ANN), and Naive Bayes 

(NB) have demonstrated significant potential in medical diagnosis tasks, including cancer detection 

[10].  

 

However, using raw, high-dimensional breast cancer data introduces noise and redundancy, which can 

reduce classification accuracy. Feature selection (FS) plays a critical role in identifying the most 

informative features for classification and improving the predictive performance of models [11]. In 

this context, both linear (e.g., PCA) and non-linear (e.g., Backpropagation Neural Network (BNN)) 

feature selection techniques are being explored.  

 

Furthermore, breast cancer classification is often too complex to be effectively addressed by a single 

classifier, necessitating the use of ensemble learning methods. Ensemble classification combines 

multiple classifiers to enhance robustness and accuracy by leveraging the strengths of individual 

models while mitigating their weaknesses [12], [13].  

 

This study focuses on the performance evaluation of individual classification models: SVM, KNN, 

ANN, NB, Logistic Regression (LR), and Decision Tree (DT) for breast cancer detection using the 

Wisconsin Breast Cancer Diagnostic Dataset (WBCD). FS is performed using a Principal Component 

Analysis (PCA), Pearson Correlation Coefficient (PCC) and BNN to reduce dimensionality and 

enhance model performance. The primary objective is to assess and compare the effectiveness of these 

models in accurately classifying breast cancer cases, thereby supporting early diagnosis, minimizing 

false positives, and aiding clinicians in informed decision-making.  
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2. MATERIALS & METHODS   

2.1. Dataset and Feature Selection  

This study utilizes the WBCD, a widely recognized dataset for evaluating the performance of 

classification models in breast cancer detection. The dataset contains 569 instances, each characterized 

by 30 numerical features derived from digitized images of fine needle aspirate (FNA) of breast masses. 

These features describe various properties of the cell nuclei, including radius, texture, perimeter, area, 

smoothness, compactness, concavity, symmetry, and fractal dimension, among others. The outcome 

variable is a binary classification label, indicating whether a tumor is benign or malignant [14].  

 

Before model training and evaluation, the dataset was preprocessed to ensure quality and consistency. 

This involved normalizing the feature values to a standard scale, checking for and handling missing 

data, and dividing the dataset into training (80%) and testing (20%) subsets to facilitate model 

evaluation on unseen data.  

 

To enhance the effectiveness and efficiency of classification, FS was employed as a critical step in the 

data preparation process. Selecting the most relevant features helps reduce overfitting, improve 

accuracy, and decrease computational complexity. For this purpose, both linear and nonlinear feature 

selection methods were applied. PCA and PCC were used to identify linearly significant and 

uncorrelated features, while a BNN was utilized to identify non-linear dependencies and interactions 

among the features [15]. The reduced feature sets obtained from these techniques were then used as 

input for evaluating the performance of various classification models.  

 

In this study, six classification models were employed: SVM, KNN, ANN, NB, LR, and DT.  

3. METHODS & METHODOLOGY 

This study adopts a structured methodology (as shown in Figure 1) aimed at evaluating the impact of 

different feature selection techniques on the performance of classification models for breast cancer 

detection. The WBCD comprising of 683 complete instances while 16 instances with missing values 

were handled through mean average making a total of 699 instances. There are 241 (34.5%) malignant 

records and 458 (65.5%) benign records. The records were defined using ten features. There are 241 

(34.5%) malignant records and 458 (65.5%) benign records. The records were defined using ten 

features. Data preprocessing included normalization to a standard scale and partitioning into training 

and testing sets in an 80:20 ratio.  

 

Three feature selection methods were applied to reduce dimensionality and enhance classifier 

performance: PCA and PCC served as linear approaches, while BNN was implemented for non-linear 

selection. PCA extracted orthogonal components that captured the highest data variance, whereas PCC 

filtered out redundant features with high correlation. BNN leveraged connection weights to identify 

complex, non-linear relationships among features [15].  
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Six supervised learning algorithms (SVM, KNN, ANN, NB, LR, DT) were each trained using the 

feature subsets produced by these selection techniques. The models’ classification performance was 

evaluated using standard metrics like accuracy, precision, recall, specificity and f1-Score. Confusion 

matrices were also used to assess each model’s prediction reliability in differentiating malignant from 

benign cases. MATLAB was used for model training and analysis, while Microsoft Excel was used to 

validate computations related to PCA and PCC. This comprehensive classification-focused framework 

enabled a comparative analysis in improving diagnostic accuracy for breast cancer.  

 

Figure 1: Methodology Framework  

3.1. Support Vector Machine (SVM)  

Support Vector Machine (SVM) is a powerful classification algorithm that seeks to find the optimal 

hyperplane to separate classes in a multidimensional space [16]. Both linear and nonlinear kernel 

functions were tested to assess the impact of feature selection on SVM performance. Hyperparameters, 

including the penalty term and kernel-specific parameters, were tuned to achieve optimal classification 
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outcomes. SVM is well-suited for biomedical applications due to its robustness and strong 

generalization, particularly in breast cancer detection [17].  

3.2. Artificial Neural Network (ANN)  

Artificial Neural Networks (ANN) are capable of learning intricate patterns through interconnected 

layers of neurons. The model used consisted of an input layer, one or more hidden layers, and an output 

layer [18]. Training was conducted using the backpropagation algorithm to minimize the prediction 

error. ANN’s flexibility allows it to model both linear and non-linear data relationships, making it a 

valuable tool for classification in complex datasets like WBCD [19].  

3.3. K-Nearest Neighbor (KNN)  

The K-Nearest Neighbor (KNN) algorithm is a simple, yet effective classification method based on 

instance-based learning [20]. It classifies test samples by assigning them the majority class among 

their k closest neighbors, calculated using the Euclidean distance. Cross-validation was used to 

determine the optimal value of k that maximized classification performance [21]. KNN’s performance 

was analyzed across different feature subsets to assess its sensitivity to feature dimensionality.  

3.4. Naive Bayes (NB)  

Naive Bayes (NB) is a probabilistic classifier grounded in Bayes’ theorem, assuming conditional 

independence among features [22]. Despite its simplicity, it has shown competitive performance in 

biomedical classification tasks. In this study, NB was trained to estimate posterior probabilities of class 

labels, and model parameters were learned using maximum likelihood estimation [21]. Its 

classification output was evaluated in the context of each feature selection method.  

3.5. Logistic Regression (LR)  

Logistic Regression (LR) is a widely adopted model for binary classification problems. It maps input 

features to the probability of belonging to a particular class using the sigmoid function [21]. The model 

was optimized via gradient descent to determine the most suitable weights. Its role in this study was 

to serve as a baseline linear classifier for evaluating the influence of feature selection on classification 

accuracy in breast cancer detection [23].  

3.6. Decision Tree (DT)  

Decision Tree (DT) classifiers work by recursively splitting the dataset based on feature values to 

create a hierarchical tree structure [24]. Each node represents a feature test, and each leaf node signifies 

a predicted class. The Gini index was used as the splitting criterion, and pruning techniques were 

applied to avoid overfitting [25]. DT’s interpretability made it valuable for assessing how different 

features—selected by each method—impacted classification decisions.  

3.7. Hyperparameter Settings  

In this study, all classifiers were implemented using their default hyperparameter settings as provided 

by the MATLAB Classification Learner Toolbox. This approach was adopted to ensure consistency 

across models and to reflect a baseline performance that can be reasonably expected without extensive 

tuning. The default configurations have been widely validated in previous literature and offer a 

practical benchmark for evaluating the impact of different feature selection methods on model 

performance.  
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3.8. Evaluation Metrics  

To assess the predictive effectiveness of the classification models used for breast cancer diagnosis, a 

range of standard performance evaluation criteria were employed. These metrics were derived from 

the confusion matrix, a vital tool in quantifying classification accuracy and errors. The confusion 

matrix captures the distribution of predicted versus actual labels, offering a granular view of each 

model’s performance [2].  

 

In this study, the confusion matrix was used to record four critical outcomes:  

• True Positive (TP): Instances correctly identified as malignant (cancerous).  

• False Positive (FP): Benign (non-cancerous) cases incorrectly predicted as malignant.  

• True Negative (TN): Benign cases correctly classified as non-cancerous.  

• False Negative (FN): Malignant cases mistakenly classified as benign.  

From these outcomes, five key evaluation metrics were computed to measure classifier performance:  

• Accuracy  

Represents the proportion of total correct predictions out of all predictions made.  

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦   

  𝐹𝑁  

• Precision  

219 Indicates the proportion of correctly predicted malignant cases out of all cases predicted as  

220 malignant.   

                                        𝑇𝑃 

221 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   

222  

• Recall (Sensitivity)  

223 Measures the model’s ability to correctly identify malignant cases.  

                           𝑇𝑃 

224 𝑟𝑒𝑐𝑎𝑙𝑙   

225  

• Specificity  

226 Captures the model’s ability to correctly classify benign cases.  

227 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦   

228  

• F1-Score (F-Measure)  

229 Provides a harmonic mean of Precision and Recall, offering a balanced metric especially  

230 valuable when classes are imbalanced.  

231                                                                                   (Recall    Precision) 

232                                                                             *    (Recall + Precision)    * 

233 𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2   

234 These metrics collectively provided a robust framework to evaluate and compare the 233 effectiveness 

of different classifiers trained on features selected by both linear and non-linear 234 techniques. They 
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ensured not only that the models could detect cancer accurately but also that 235 false positives and 

negatives were minimized, thus enhancing the diagnostic reliability of the 236 machine learning 

approaches employed [2].  

 4. RESULTS & DISCUSSION  

The descriptive statistical analysis presented in Table 1 offers a detailed summary of the distributional 

characteristics of ten diagnostic features used in breast cancer evaluation. 

 

Among these variables, CT records the highest mean value (4.42), highlighting its significance in the 

dataset, while Mitoses (M) has the lowest mean (1.59), reflecting its typically low occurrence in benign 

cases. BN exhibits the greatest variability, with a standard deviation of 3.62 and a variance of 13.13, 

suggesting it may play a key role in distinguishing between classes. In contrast, the feature C shows 

the least variability, supporting its likely categorical nature. 

 

The kurtosis values indicate that M has a sharp peak distribution with notable outliers (12.66), whereas 

C shows a flatter distribution (-1.58); the remaining features largely approximate normality. Skewness 

results reveal pronounced right skew in M (3.56) and moderate skew in SECS (1.71) and MA (1.52), 

suggesting the presence of higher-end outliers. 

 

Most feature values range between 1 and 10, indicating a normalized or scaled dataset, while the class 

label ranges from 2 to 4, presumably distinguishing benign from malignant cases. These findings point 

to the need for potential transformations or normalization, particularly for features with high skewness 

and kurtosis, to improve the performance of classification algorithms that are sensitive to input 

distributions. This underscores the critical role of preprocessing and thoughtful feature selection in 

enhancing model effectiveness. 

 

 Table 1: Descriptive Statistical Analysis of the parameters  

Parameter  Mean  SD  SV  Kurtosis  Skewness  Min  Max  

Clump Thickness (CT)  4.42  2.82  7.93  -0.62  0.59  1.00  10.00  

Uniformity of Cell Size 

(UCSZ)  
3.13  3.05  9.31  0.10  1.23  1.00  10.00  

Uniformity of Cell Shape 

(UCSH)  
3.21  2.97  8.83  0.01  1.16  1.00  10.00  

Marginal Adhesion (MA)  2.81  2.86  8.15  0.99  1.52  1.00  10.00  

Single Epithelial Cell Size 

(SECS)  
3.22  2.21  4.90  2.17  1.71  1.00  10.00  

Bare Nuclei (BN)  3.56  3.62  13.13  -0.79  0.98  1.00  10.00  

Bland Chromatin (BC)  3.44  2.44  5.95  0.18  1.10  1.00  10.00  

Normal Nucleoli (NN)  2.87  3.05  9.32  0.47  1.42  1.00  10.00  

Mitoses (M)  1.59  1.72  2.94  12.66  3.56  1.00  10.00  

Class Label (C)  2.69  0.95  0.90  -1.58  0.65  2.00  4.00  
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4.1. Feature Selection Analysis  

FS in this study was conducted using three techniques: PCA, PCC, and BNN. The primary goal of 

each method was to reduce the dimensionality of WBCD while retaining the most relevant features for 

classification. PCA transformed the original features into a new set of uncorrelated principal 

components that captured the highest variance in the data.  

 

PCA effectively reduced the number of features while preserving approximately 95% of the total 

variance (Table 2). The majority of this variance was captured by the first few components, indicating 

that essential information was retained within a lower-dimensional representation. This makes PCA 

particularly well-suited for linear classifiers (Table 3). Specifically, the first seven principal 

components were selected based on the cumulative explained variance, which accounted for about 

95.14% of the total variance. Table 3 shows the resulting feature subsets obtained through PCA.  

Table 2: Eigenvalue and percentage of data explained by each factor. 

Number  Value  Difference  Proportion  CV  CP  

1  6.70864  5.91513  0.6709  6.70864  0.6709  

2  0.79352  0.24635  0.0794  7.50216  0.7502  

3  0.54716  0.07938  0.0547  8.04933  0.8049  

4  0.46778  0.08777  0.0468  8.51711  0.8517  

5  0.38001  0.06038  0.038  8.89711  0.8897  

6  0.31963  0.02199  0.032  9.21675  0.9217  

7  0.29764  0.03498  0.0298  9.51439  0.9514  

8  0.26266  0.128  0.0263  9.77705  0.9777  

9  0.13466  0.04636  0.0135  9.91171  0.9912  

10  0.0883  ---  0.0088  10  1  

Table 3: Principal Component Analysis Feature Subsets 

SUBSETS (M)  ATTRIBUTES  

M1  UCSH, UCSZ, BN  

M2  UCSH, UCSZ, BN, BC, CT, NN  

M3  UCSH, UCSZ, BN, BC, CT, NN, MA, SECS, M  

270  
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The PCC matrix presented in Table 4 highlights key linear relationships among the diagnostic features 

and their association with the tumor classification label (C). Among all features, Uniformity of Cell 

Shape (UCSH) (0.819), Uniformity of Cell Size (UCSZ) (0.818), and Bare Nuclei (BN) (0.813) exhibit 

the highest correlation with the class label, suggesting they are highly informative for distinguishing 

between malignant and benign tumors and should be prioritized during feature selection. Other notable 

features with strong correlations to C include Clump Thickness (CT) at 0.717, Bland Chromatin (BC) 

at 0.757, and Normal Nucleoli (NN) at 0.7121, indicating their strong diagnostic relevance.  

 

Conversely, Mitoses (M) shows the weakest correlation with C (0.423), implying limited standalone 

predictive power. The matrix also reveals high inter-feature correlations, particularly between UCSZ 

and UCSH (0.907), and between UCSZ and Single Epithelial Cell Size (SECS) (0.753), suggesting the 

presence of multicollinearity. Additional redundancy is observed among SECS, BC, BN, and NN, 

which are all moderately to strongly correlated with one another and with the target class. This 

redundancy underscores the risk of overfitting when using highly correlated features in classification 

models.  

 

Overall, UCSH, UCSZ, and BN stand out as the most predictive features for breast cancer 

classification. However, the significant multicollinearity among several features emphasizes the need 

for dimensionality reduction or regularization methods—such as PCA or Lasso regression—to 

improve model efficiency and interpretability. Figure 2 visualizes the correlation matrix, and Table 5 

lists the feature subsets selected based on PCC analysis. Table 4: Correlation analysis between the 

input and output variables  

 

Parameters  CT  UCSZ  

  

UCSH  

  

MA  

  

SECS  

  

BN  

  

BC  

  

NN  

  

M  

  

C  

  

CT  1   
                

UCSZ  0.645  1   
              

UCSH  0.655  0.907  1   
            

MA  0.487  0.705  0.683  1   
          

SECS  0.523  0.753  0.720  0.599  1   
        

BN  0.583  0.685  0.708  0.662  0.579  1   
      

BC  0.559  0.756  0.736  0.667  0.618  0.674  1   
    

NN  0.536  0.723  0.719  0.604  0.631  0.580  0.666  1   
  

M  0.350  0.459  0.439  0.418  0.481  0.337  0.344  0.4281  1   

C  0.717  0.818  0.819  0.698   0.686  0.813  0.757  0.7121  0.423  1  

" 
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Figure 2: Pearson Correlation Coefficient analysis between the input and output variables  

Table 5:  Pearson Correlation Coefficient Feature Subsets  

SUBSETS (M)  ATTRIBUTES  

M1  UCSH, UCSZ, BN  

M2  UCSH, UCSZ, BN, BC, CT, NN  

M3  UCSH, UCSZ, BN, BC, CT, NN, MA, SECS, M  

 

The BNN utilized for feature selection was constructed using a fully connected feedforward 

architecture. This network includes an input layer, two hidden layers, and an output layer. The first and 

second hidden layers contain 32 and 16 neurons respectively, both employing the ReLU (Rectified 

Linear Unit) activation function. The output layer uses a sigmoid activation function to support binary 

classification. The model was trained using the binary cross-entropy loss function, optimized with the 

Adam optimizer, and configured with a learning rate of 0.001. Training was conducted over 100 epochs 

with a batch size of 32. To prevent overfitting, early stopping was applied based on validation loss. 

This configuration was selected after preliminary tuning to balance training efficiency and predictive 

accuracy.   
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The feature importance analysis, based on Root Mean Square Error (RMSE), ranks the diagnostic 

attributes according to their contribution to the model’s predictive performance (Table 6). Uniformity 

of Cell Size (UCSZ) achieved the lowest RMSE (0.2276), indicating its strong influence on 

classification accuracy. It was followed closely by Uniformity of Cell Shape (UCSH) with an RMSE 

of 0.238 and Bland Chromatin (BC) at 0.279, all of which align with previously identified strong linear 

correlations and suggest their central role in distinguishing between benign and malignant tumors.  

In contrast, features such as Mitoses (M), Bare Nuclei (BN), and Clump Thickness (CT) yielded higher 

RMSE values of 0.404, 0.336, and 0.3231 respectively, indicating weaker contributions to the BNN’s 

predictive power. The relatively low importance of M further corroborates earlier findings from the 

descriptive statistics and correlation analysis, suggesting it is less informative for classification tasks.  

To ensure statistical reliability and robustness of the RMSE-based rankings, a 10-fold cross-validation 

strategy was implemented during model training and evaluation. The reported RMSE values in Table 

6 represent the mean ± standard deviation across all folds. For instance, the lowest RMSE was recorded 

as 0.238 ± 0.021, while the highest reached 0.402 ± 0.026. Despite the seemingly narrow range, these 

results consistently appeared across different data partitions, confirming the BNN’s stability and the 

statistical significance of feature importance rankings. In summary, the BNN effectively captured 

complex, non-linear relationships within the dataset and prioritized features like UCSZ, UCSH, and 

BC as the most influential for breast cancer classification. These results validate the efficacy of BNN-

based feature selection for enhancing model performance and highlight its potential in medical 

diagnostic applications.  

Table 6: Back Propagation Neural Network Feature Subsets  

Attributes  RMSE  Ranking  

UCSZ  0.2276  1  

UCSH  0.238  2  

BC  0.279  3  

SECS  0.2891  4  

NN  0.3053  5  

MA  0.3216  6  

CT  0.3231  7  

BN  0.336  8  

M  0.404  9  
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Table 7:  Back Propagation Neural Network Feature Subsets  

SUBSETS (M)  ATTRIBUTES  

M1  UCSZ, UCSH, BC  

M2  UCSZ, UCSH, BC, SECS, NN, MA  

M3  UCSZ, UCSH, BC, SECS, NN, MA, CT, BN, M  

4.2. Comparative Analysis of all Classifier Performance  

After evaluating six classification models (SVM, KNN, LR, DT, NB, and ANN), SVM models (Table 

8) demonstrated robust performance across all configurations. The highest classification accuracy of 

97.3% was achieved using a Quadratic kernel on the non-linear M3 subset, while the best linear 

performance was 96.5% with the Medium Gaussian kernel on M2. These results emphasize SVM’s 

ability to model complex boundaries, particularly when supported by non-linear feature 

transformations. Overall, SVM consistently ranked among the top-performing classifiers, 

underscoring its effectiveness in high-dimensional medical datasets.  

KNN classifiers also performed notably well as seen on table 9. The Cosine and Weighted variants 

reached 97.1% and 96.9% accuracy, respectively, on the non-linear M3 subset—surpassing the best 

linear result of 96.3% on M2/M3. These outcomes affirm the model’s sensitivity to both the choice of 

distance metric and the feature representation. KNN’s performance further highlights its capacity to 

adapt effectively to local patterns in transformed feature spaces.  

As a linear classifier, LR (Table 10) achieved a solid accuracy of 95.7% on the linear M2 subset, with 

a modest increase to 96.4% using the non-linear M3 subset. While LR did not outperform more 

complex models like SVM or KNN, its high interpretability and relatively competitive performance 

make it an attractive option for clinical settings where model transparency is essential.  

DT models showed stable but modest performance (Table 11), with accuracy peaking at 94.8% using 

the Medium variant on the non-linear M1 subset, and 94.7% with the Fine and Medium variants on 

linear M1. This relatively consistent performance across feature types suggests limited sensitivity to 

feature transformations but also highlights a potential for overfitting. The results indicate that DTs may 

benefit more from ensemble methods such as Random Forest or boosting to enhance generalizability.  

NB classifiers exhibited clear improvement when applied to non-linear feature subsets (Table 12). The 

Kernel NB model achieved 96.6% on non-linear M3, surpassing the 95.7% achieved with the Gaussian 

variant on linear M3. These results confirm that NB can benefit from enriched feature representations, 

particularly when independence assumptions are relaxed by more expressive feature selection 

strategies.  

ANN classifiers maintained consistently high performance across both feature categories as seen on 

table 13. The best result was 96.3% on the linear M3 subset, followed closely by 96.1% on the non-

linear M3. This close parity indicates ANN’s flexibility in learning both linear and non-linear 
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relationships, supporting its application in complex medical classification problems where pattern 

recognition across diverse input spaces is required.  

Across all classifiers, the non-linear M3 subset consistently produced the highest accuracies, 

particularly for SVM (97.3%), KNN (97.1%), and NB (96.6%). This trend underscores the importance 

of aligning the classifier architecture with the nature of the feature transformations. Models capable of 

exploiting complex, high-order relationships such as SVM and KNN—demonstrated improved 

generalization when coupled with non-linear features. SVM and KNN emerged as the top performers 

across both feature categories, suggesting their suitability for breast cancer detection tasks involving 

heterogeneous or high-dimensional data. ANN offered a strong balance between accuracy and 

adaptability, while LR and DT, though relatively simpler, provided competitive performance and 

retained their appeal for interpretable or resource-constrained applications.  

Table 8: Accuracy results of SVM classifiers using linear and non-linear FS  

 
LINEAR FS (%)  

 
NON-LINEAR FS (%)  

SVM  M1  M2  M3  M1  M2  M3  

Linear  94.6  96  95.9  94.4  95.6  96.6  

Quadratic  95.3  96  96.4  95.6  95.7  97.3  

Cubic  95.7  95.9  95.4  95.3  95.7  96.3  

Fine Gaussian  94.7  95  94.7  95  95.7  94.1  

Medium Gaussian  95.3  95.9  95.9  95  95.9  96.7  

Coarse Gaussian  94.8  95.7  95.9  94.6  95.3  96.9  
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Table 9: Accuracy results of KNN classifiers using linear and non-linear FS  

KNN  LINEAR FS (%)  NON-LINEAR FS (%)  

M1  M2  M3  M1  M2  M3  

FINE  94.4  94.1  93.4  93  94  95.1  

MEDIUM  94.8  95.7  95.7  95  95.3  96.7  

COARSE  93.7  94  93.7  94.6  93.3  95.3  

COSINE  94.8  96.3  96.3  95.4  96  97.1  

CUBIC  94.7  96.1  95.3  95  95.4  96.7  

WEIGHTED  95.3  95.9  95.9  94.3  96  96.9  

  

Table 10: Accuracy results of LR classifiers using linear and non-linear FS  

LR  LINEAR FS (%)  NON-LINEAR FS (%)  

 
M1  M2  M3  M1  M2  M3  

LOGISTIC REGRESSION  94.3  95.7  95.6  94.4  95.1  96.4  

  

Table 11: Accuracy results of DT classifiers using linear and non-linear FS  

DT  LINEAR FS (%)  NON-LINEAR FS (%)  

M1  M2  M3  M1  M2  M3  

FINE  94.7  94.1  94.4  94.7  93.8  93.4  

MEDIUM  94.7  94.3  94.4  94.8  94  93.6  

COARSE  94.6  93.6  93.6  94.3  93.3  93.3  

 



16                                                                        International Journal of Emerging Multidisciplinaries 

  

Table 12: Accuracy results of NB classifiers using linear and non-linear FS  

NB  LINEAR FS (%)    NON-LINEAR FS (%)  

M1  M2  M3  M1  M2  M3  

GUASSIAN  94.6  95.7  95.4  94.8  95.6  95.7  

KERNEL  92.4  95.3  95.7  94.3  94.6  96.6  

Table 13: Accuracy results of ANN classifiers using linear and non-linear FS  

ANN  LINEAR FS (%)  NON-LINEAR FS (%)  

M1  M2  M3  M1  M2  M3  

ARTIFICIAL NEURAL NETWORK  95.6  96  96.3  95.7  95.3  96.1  

4.3 Performance Evaluation Analysis of Best Classification Models  

A detailed comparative analysis of the best performing under linear and non-linear FS shows clear 

performance differences once Accuracy, Precision, Recall, Specificity, and F1Score are considered. 

SVM emerges as the leading model: with a Quadratic kernel trained on the non-linear M3 feature 

subset, it attains the highest accuracy of 97.3 %, coupled with 94.8 % precision, 97.5 % recall, 97.2 % 

specificity, and a 96.1 % F1-Score. Even its best linear configuration, a Medium Gaussian kernel on 

M2, maintains a strong 96.5 % accuracy, underlining SVM’s robustness on both feature types.  

 

KNN follows closely. Using a Cosine distance metric on the non-linear M3 subset, KNN achieves 97.1 

% accuracy, with recall and F1-Score matching SVM’s recall (97.5 %) and reaching 95.9 %, 

respectively; its linear counterpart records a still-impressive 96.3 % accuracy. LR, while inherently 

linear, rises to 96.4 % accuracy and a 94.9 % F1-Score on the non-linear M3 subset, offering a 

transparent alternative for clinical contexts where interpretability is paramount. DT records the lowest 

accuracies of 94.8 % for non-linear features and 94.7 % for linear ones with a comparatively modest 

F1-Score of 92.7 %, reflecting higher false-positive rates and potential overfitting. NB benefits 

markedly from the non-linear Kernel variant, reaching 96.6 % accuracy, 93.2 % precision, and 97.1 % 

recall, outperforming its Gaussian counterpart and demonstrating that richer feature representations 

mitigate the model’s strong independence assumptions. ANN remains consistently competitive: it 

peaks at 96.3 % accuracy on linear M3 and maintains 96.1 % on the corresponding non-linear subset, 

confirming its adaptability to varying feature structures.  

Overall, SVM with the Quadratic kernel on M3 stands out as the best performer across all metrics, 

while KNN provides the most balanced alternative, virtually matching SVM’s recall and F1 but at a 
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slight cost in precision. LR offers a light yet respectable option, NB shows the greatest benefit from 

non-linear features, and ANN delivers stable high performance regardless of feature type. DT, though 

acceptable, trail the other models. These results underscore the need to align classifier architecture 

with the complexity of feature transformations: non-linear subsets, particularly M3, consistently boost 

performance and should be favored when high diagnostic accuracy in breast cancer detection is 

required.  

Table 14: Performance Evaluation Metrics for Best Classification Results of Linear and 

Nonlinear Feature Sets (M1–M3)  

 

Model  

SVM - 

Medium  

Gaussian   

SVM -  

Quadratic  

KNN -  

Cosine  

KNN - 

Cosine  

LR  

LR  

DT - Fine  

&  

Medium  
 

 

FS (Subset)  

Linear (M2)  

Non-Linear 

(M3)  

Linear (M2/M3)  

Non-Linear 

(M3)  

Linear (M2)  

Non-Linear 

(M3)  

Linear (M1)  

 

 

Accuracy 

(%)  

96.5  

97.3  

96.3  

97.1  

95.7  

96.4  

94.7  

 

 

TP 

234 

235 

233 

235 

232 

233 

230 

 

 

TN 

441 

445 

440 

444 

437 

441 

432 

 

 

FP 

17  

13  

18  

14  

21  

17  

26  

 

 

FN 

7  

6  

8  

6  

9  

8  

11  

 

 

Precision 

93.2  

94.8  

92.8  

94.4  

91.7  

93.2  

89.8  

 

 

Recall 

97.1  

97.5  

96.7  

97.5  

96.3  

96.7  

95.4  

 

 

Specificity 

96.3  

97.2  

96.1  

96.9  

95.4  

96.3  

94.3  

 

 

F1- 

Score  

95.1  

96.1  

94.7  

95.9  

93.9  

94.9  

92.6  

 

 

Model  

DT –  

Medium  

NB - 

Gaussian  

NB - 

Kernel  

ANN   

ANN  

 

 

FS (Subset)  

Non-Linear 

(M1)  

Linear (M2)  

Non-Linear 

(M3)  

Linear (M3)  

Non-Linear 

(M3)  
 

 

Accuracy 

(%)  

94.8  

95.7  

96.6  

96.3  

96.1  

 

 

TP 

230 

232 

234 

233 

233 

 

 

TN 

433 

437 

441 

440 

439 

 

 

FP 

25  

21  

17  

18  

19  

 

 

FN 

11  

9  

7  

8  

8  

 

 

Precision 

90.2  

91.7  

93.2  

92.8  

92.5  

 

 

Recall 

95.4  

96.3  

97.1  

96.7  

96.7  

 

 

Specificity 

94.5  

95.4  

96.3  

96.1  

95.9  

 

 

F1- 

Score  

92.7  

93.9  

95.1  

94.7  

94.5  
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Figure 3: Comparative Performance of Best Classifiers with Linear and Non-Linear Feature 

Subsets 

5. CONCLUSION   

In summary, this study compared six widely used machine-learning classifiers (SVM, KNN, LR, DT, 

NB, and ANN) on the WBCD after both linear (M1–M3) and non-linear (BNNderived) feature 

transformations. Results show that non-linear features substantially improve diagnostic performance, 

with SVM employing a Quadratic kernel on the M3 subset achieving the highest accuracy, precision, 

recall, specificity, and F1-score. KNN (Cosine, M3) closely followed, while ANN delivered 

consistently strong results across feature types. LR offered a highly interpretable yet competitive 

alternative, NB benefited most from non-linear kernels, and DT lagged behind, suggesting 

susceptibility to overfitting. These findings confirm that pairing appropriate classifiers with richer, 

non-linear feature representations is essential for maximizing breast-cancer detection accuracy.  

Despite these promising outcomes, several limitations should be acknowledged. First, the analysis 

relied on a single public dataset; therefore, class distribution, imaging protocols, and demographic 

diversity may not fully reflect real-world clinical variability. Second, the study did not explore 

ensemble methods, cost-sensitive learning, or cross-validated hyperparameter optimization, each of 

which could further enhance performance. Third, while confusion-matrix-derived metrics were 

examined, additional measures such as area under the ROC curve and calibration were beyond scope. 

Finally, computational cost and explainability were not systematically quantified, yet they are critical 

for clinical deployment.  
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Future work should validate the top-performing models on larger, multi-institutional datasets; 

incorporate ensemble or hybrid approaches to reduce variance and bias; and employ explainable-AI 

techniques so clinicians can better trust automated assessments. Investigating class-imbalance 

handling, real-time inference efficiency, and integration with complementary data sources will further 

strengthen the reliability and utility of machine-learning tools for early breast-cancer diagnosis.  
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