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Abstract   
This series of papers introduces EasyGPT, a minimalistic, flexible and novel deep learning 

implementation of the Transformer architecture for the simulation and testing of Natural Language 

Processing (NLP) applications. Built to open industry standards, our model combines a customizable 

modular design which enables, among other things, model selection, hyperparameter configuration 

and user-selectable tokenization engine plugins. In this first paper in the series, we discuss the overall 

system design of EasyGPT and evaluate its performance by fine-tuning the DistilGPT2 model on the 

DailyDialog dataset. Our work provides both a simple way for those starting in AI research to 

experience ChatGPT-like chatbot technologies at the coding level, as well as providing a foundation 

for the transition towards more realistic and complex model-building and experimentation.  

Keywords: GPT , AI , NLP , Deep Learning. 

1.1 Introduction  

The field of Natural Language Processing (NLP) has a rich tradition going back to the middle of the 

20th century. In the immediate aftermath of World War II, a period of unprecedented stability set the 

stage for technological transformation. This era enabled the migration of mainframe computers from 

their initial military and government applications to research institutions and universities, where they 

became indispensable tools for exploring new computational possibilities. As these systems later 

permeated businesses, commercial entities began to recognize the potential of large-scale data 

processing, paving the way for the application of computers to complex language tasks.  
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 It is self-evident that computer technology has been the cornerstone upon which rapid innovations in 

NLP have been built. From its inception, advances in hardware and computational paradigms have 

allowed researchers and engineers to push the boundaries of what is possible in understanding and 

generating human language using machines. This technological evolution has been both deeply 

intertwined with and benefited from developments in cognate fields such as Artificial Intelligence 

(AI) and Artificial Neural Networks (ANNs). 

 

Indeed, one can identify three distinct eras of co-development in these disciplines (Table 1). In the first 

era (1940s – 1960s), early computational models emerged from pioneering work that sought to apply 

statistical methods to language processing tasks. As computational power increased, the second era 

(1970s – 1980s) saw the rise of rule-based systems and the integration of linguistic theories with 

computer science, which led to more structured approaches to language understanding. The present 

era, starting around the early 1990s, is characterized by a symbiotic relationship between computing, 

communication and data technologies. 

 

Era  NLP  AI  ANNs  Computer Technology  

Early Period  
(1940s- 
1960s)  

• 1954: "Logic Theory  
Machine" developed   

• 1966: ELIZA chatbot 

created  

• 1950: Turing Test 

proposed  
• 1956: Term "Artificial 

Intelligence" coined  
• 1957: First AI program 

developed  

• 1943: McCulloch-Pitts 

neuron model   
• 1958: Perceptron introduced  

• Emergence of early 

computers and 

programming languages  

Middle  
Period  
(1970s- 
1980s)  

• 1972: SHRDLU 

developed   
• 1980s: Rule-based and 

expert systems  

• Expert systems 

developed  
• 1980s: Backpropagation and 

Training algorithms   

• Advancements in hardware 

and software   
• Microprocessors   

Modern Era  
(1990sPresent)  

• 1990s: Statistical and 

machine learning 

techniques   
• 2001: Noisy Channel 

Model for speech 

recognition   
• 2013: Word2Vec for 

word embeddings   
• 2017: Transformer 

architecture   
• 2018: BERT   
• 2020: T5  

• 1990s: Rise of machine 

learning and data-driven 

approaches   
• 2006: Deep Belief 

Networks   
• 2012: AlexNet wins 

ImageNet   
• 2016: AlphaGo defeats 

Go champion  

• 1990s: Deep learning 

techniques (CNNs, RNNs)   
• 2010s: LSTMs, GANs  

• Rapid advancements in 

computing power, data 

storage, and networking-   
• Emergence of deep learning 

and neural network 

architectures-   
• Widespread adoption of 

machine learning and AI in 

various applications  

Table 1: Parallel Development of NLP and cognate technologies 

In this age, breakthroughs in all these fields have led to the development of sophisticated models that 

not only advance NLP but also continuously benefit from progress in each other. We observe that the 

evolution of NLP reflects a broader narrative – a story of how technological advancements benefit 

from the compounding power of interdisciplinary research and development, leading to 

groundbreaking capabilities that redefine our interaction with language, information and society as a 

whole. No recent advance has demonstrated this more effectively and powerfully than the explosive 

growth in GPT (Generative Pre-trained Transformer) chatbots that have rapidly transformed from 
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niche research projects to mainstream applications across industries. Their ability to generate fluent, 

human-like text across a multitude of tasks has driven unprecedented public engagement and 

widespread adoption [2 , 7]. As businesses and individuals increasingly adopt these technologies, the 

demand for ever-more customizable and scalable chatbot solutions has surged. It is inevitable that 

progress in this area will accelerate for the foreseeable future.   

1.2 Literature Overview  

Historically, we find that NLP research methodologies and technologies originally relied primarily on 

statistical methods, with literature from the 1980s onwards concentrating on techniques such as the 

following:  

  

- Rule-Based Systems: These employed handcrafted rules to process and understand language. These 

systems relied on linguistic knowledge, such as grammar rules and syntactic structures, to parse 

sentences and extract meaning. While effective for specific tasks, rule-based systems were limited in 

their ability to generalize across different contexts and languages.  

- Statistical Methods: The early 1990s saw a shift towards statistical approaches in NLP, driven by the 

availability of large corpora and advancements in computational power. Techniques such as ngrams, 

which analyze sequences of n words, were commonly used for tasks like language modeling and text 

classification. Statistical methods allowed for the estimation of probabilities based on observed data, 

enabling more flexible and data-driven approaches compared to rule-based systems.  

- Hidden Markov Models (HMMs): HMMs became popular for tasks such as part-of-speech tagging 

and speech recognition. These probabilistic models represent systems that transition between hidden 

states, making them suitable for sequential data. HMMs, however, rely on the assumption that the 

future state depends only on the current state, which limit their ability to capture long-range 

dependencies in language.  

- Bag-of-Words (BoW) Models: In text classification and information retrieval, the bag-of-words 

model was widely used. This approach represents text as a collection of words, disregarding grammar 

and word order. While simple and effective for certain applications, BoW models often fail to capture 

the contextual relationships between words, leading to a loss of semantic information.  

- Vector Space Models: Techniques such as Latent Semantic Analysis (LSA) and Latent Dirichlet 

Allocation (LDA) have also been employed to analyze and represent text data in a lower-dimensional 

space. These models aimed to uncover latent structures in the data, thus enabling practical 

implementations for topic modeling and document similarity analysis  

However, a shift towards ANN-based solutions also started from the 1990s onwards. This was largely 

driven by progress in the development of recurrent neural networks (RNNs) and long short-term 

memory networks (LSTMs). RNNs, (originally introduced in the 1980s), were designed to handle 

sequential data by maintaining a hidden state that captures information from previous time steps. 

However, they struggled with long-range dependencies due to issues such as vanishing and exploding. 

This limitation led to the development of LSTMs, which incorporated memory cells and gating 

mechanisms to better retain information over extended sequences, thus improving performance on 

tasks like language modeling and machine translation [6]. 
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1.3 The Transformer Revolution  

Despite the advancements offered by LSTMs, the need for more efficient and scalable models 

persisted.  

The fundamental paradigm shift in NLP, which has also led to today’s GPT chatbots, took place with 

the invention of the Transformer architecture by [9]. Transformers introduced and leveraged the 

concept of attention, a mechanism that allows the model to weigh the significance of (or, in human 

terms, focus attention upon) the most significant words in a sequence, enabling them to capture 

contextual relationships without the sequential processing constraints of RNNs. It is critically this 

ability of Transformers to handle long-range dependencies in word sequences effectively that has led 

to their widespread adoption, culminating in the development of state-of-the-art models such as BERT 

and GPT, which have set new benchmarks in various NLP tasks [3 , 2]. Fortuitously, the Transformer 

architecture facilitates, in addition, parallelization during training, significantly enhancing 

computational efficiency and scalability.  

  

In the context of the Transformer architecture, attention is a mechanism that allows the model to focus 

on specific parts of the input data when generating output. It computes a weighted sum of the input 

elements, where the weights are learned based on the input data. The attention mechanism takes three 

inputs, utilizing terminology adapted from database theory:  

1. Query (Q): This represents the input used to compute the attention weights, essentially serving as the 

request for information from the model.  

2. Key (K): This is associated with the Query and is used to compute the attention weights by determining 

how relevant each Key is to the Query.  

3. Value (V): This input is utilized to generate the output of the attention mechanism, providing the actual 

information that is retrieved based on the computed attention weights.  

Both Q and K are involved in calculating the attention weights, whereas V is the information that is 

ultimately returned as output:  
𝑛 

Attention(𝑄, 𝐾, 𝑉) = ∑ α𝑖𝑉𝑖 ,  

𝑖=1 where α𝑖 is the attentional weight for the 

𝑖𝑡ℎ element, and 𝑛 is the number of inputs. The attention weights are computed using  

 ,  

where score(𝑄, 𝐾𝑖) is the score function that computes the similarity between the query and the 𝑖𝑡ℎ key.  

It is typically computed using a simple dot product as follows:  

score(𝑄, 𝐾) = 𝑄 ⋅𝐾 ,  

√𝑑 where 𝑑 is a dimensionality parameter.   

It is worth noting that Transformers are capable of handling two types of attention mechanisms:  

1. Self-attention is a type of attention mechanism that computes the attention weights based on the input 

data itself. In self-attention, the query, key, and value are all derived from the same input data. It is 
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used to allow the model to attend to different parts of the input data when generating output, and is 

computed as follows:  

Self-Attention(𝑋) = Attention(𝑋𝑊𝑄, 𝑋𝑊𝐾, 𝑋𝑊𝑉) ,  

     where 𝑋 is the input data, and 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are learnable weight matrices that are used to compute 

the query, key, and value, respectively.   

2. Cross-attention, in contrast, is a type of attention mechanism that computes the attention weights based 

on two different input data. In cross-attention, the query is derived from one input data, and the key 

and value are derived from another input data. It is used to allow the model to attend to different parts 

of the input data when generating output, and is computed as follows:  

Cross-Attention(𝑋, 𝑌) = Attention(𝑋𝑊𝑄, 𝑌𝑊𝐾, 𝑌𝑊𝑉) ,  

     where 𝑋 and 𝑌 are the two input data, and 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are learnable weight matrices that are used 

to compute the query, key, and value, respectively.  

A schematic representation of the Transformer architecture is presented in Figure 1. As several detailed 

analyses of the Transformer architecture and its performance metrics can be found elsewhere (see, for 

instance) [8,5]. We shall restrict our discussion to its primary features and the implications of its design 

choices for our software implementation.  

1.3.1 Transformer Inputs and Outputs  

We observe firstly that the architecture consists of two blocks, an encoder and a decoder. The inputs 

into both of these blocks consist of a combination of embeddings and positional encodings, which 

together facilitate the model's understanding of the input data. Embeddings are dense vector 

representations of tokens, where each token in the vocabulary is mapped to a continuous vector space. 

This representation captures semantic relationships between words, allowing the model to understand 

similarities and differences in meaning. For instance, words with similar meanings tend to have 

embeddings that are closer together in this vector space, enabling the model to leverage these 

relationships during processing.  
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Positional encodings, on the other hand, are added to the embeddings to provide information about the 

position of each token within the input sequence. Since the Transformer architecture does not 

inherently account for the order of tokens – unlike recurrent neural networks (RNNs) that process 

sequences in a linear fashion – positional encodings are crucial for maintaining the sequential nature 

of the data. These encodings are typically generated using sine and cosine functions of different 

frequencies, allowing the model to distinguish between tokens based on their positions in the sequence.  

  

The process of tokenization involves breaking down the input text into smaller units, or tokens, that 

can be processed by the model. Tokenization can vary in granularity, ranging from character-level to 

wordlevel or sub word-level tokenization, depending on the specific approach used. Once the text is 

tokenized, each token is converted into its corresponding embedding, and positional encodings are 

subsequently added to these embeddings to create the final input representations for both the encoder 

and decoder. This combination of embeddings and positional encodings ensures that the model not 

only captures the semantic meaning of the tokens but also retains the necessary information about their 

order within the sequence, which is essential for effective language understanding and generation  
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The final output is a set of probabilities computed by a terminal stage SoftMax function, which for a 

given input vector 𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑛], is defined as:  

exp(𝑧𝑖) 

.  
𝑗=1 

The SoftMax function outputs a probability distribution over the input vector, where each output value 

is in the range (0, 1) and the sum of all output values equals 1. This makes it particularly useful for 

multiclass classification problems.  

1.3.2 Encoder and Decoder Blocks  

We next consider the encoder and decoder blocks, where the main calculations take place that 

transform the text inputs into coherent outputs that humans can understand.  

  

The encoder, which is responsible for processing the input sequence and generating a set of continuous 

representations that capture the contextual information of the input data. It comprises multiple layers 

of self-attention and feed-forward neural networks, allowing it to effectively model relationships 

between words regardless of their positional distance. This capability is particularly beneficial in tasks 

such as text classification and sentiment analysis, where the encoder can extract meaningful features 

from the input without the need for sequential processing. In encoder-only applications, such as BERT 

(Bidirectional Encoder Representations from Transformers), the model is trained to understand the 

context of words in a sentence, making it highly effective for tasks that require comprehension of the 

input text.  

  

The decoder component of the Transformer architecture is designed for generating output sequences 

based on the encoded representations. It employs a similar structure to the encoder but includes an 

additional layer of masked self-attention, which prevents the model from attending to future tokens 

during the generation process. This design is crucial for tasks such as machine translation and text 

generation, where the model must produce coherent and contextually relevant output. In decoder-only 

applications, such as GPT the model is optimized for generating text by predicting the next word in a 

sequence based on the preceding context. Mixed encoder-decoder applications, exemplified by models 

like T5 (Text-to-Text Transfer Transformer), leverage both components to handle a wide range of tasks, 

including translation, summarization, and question answering. By utilizing the encoder to process the 

input and the decoder to generate the output, these models can effectively transform one type of text 

into another, showcasing the versatility and power of the Transformer architecture in various natural 

language processing scenarios.  

  

The distinct roles of the encoder and decoder in the Transformer architecture enable a variety of 

applications tailored to specific NLP tasks.   

• Encoder-only models excel in understanding and classifying input data. Their primary mechanism is 

self-attention, and they are used in NLP models such as BERT. The use of self-attention allows the 

model to weigh the importance of each word in the input sequence relative to all other words, 

effectively capturing contextual relationships and dependencies. and generate rich contextual 
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embeddings for each token, which are crucial for tasks like text classification, named entity 

recognition, and sentiment analysis. Since self-attention is symmetrical with respect to the input data 

vector 𝑋, its bidirectional nature allows encoder-only models to consider both preceding and 

succeeding words, thereby enhancing their understanding of context and meaning.  

• Decoder-only models are used for text generation tasks. They are the primary engine behind modern  

GPT-based chatbots such as OpenAI’s ChatGPT, and utilize a variant of the self-attention mechanism, 

called masked self-attention, to ensure coherent output. The primary purpose of masked self-attention 

is to ensure that the model generates text in an autoregressive manner, meaning that it can only attend 

to the tokens that have already been generated in the sequence, rather than looking ahead at future 

tokens. Their ability to learn from vast amounts of text data allows them to generate contextually rich 

and relevant responses.  

• Mixed encoder-decoder models combine the strengths of both components, allowing for complex 

transformations and interactions between input and output sequences. The leverage both self-attention 

and cross-attention mechanisms, and are used in popular NLP models such as T5 and  

BART. The integration of cross-attention enables the decoder to align its generated output with the 

relevant parts of the input, facilitating more accurate and contextually appropriate responses. 

Specifically, the encoder employs self-attention to create contextual embeddings from the input 

sequence, while the decoder utilizes cross-attention to attend to the encoder's output. This dual 

attention mechanism allows the decoder to generate output sequences that are informed by the entire 

input context, making these models particularly effective for tasks such as machine translation, 

summarization, and question answering.   

1.4 Motivation  

In spite of their efficiency in targeted learning and computational implementation, Transformer 

architectures and their variations fundamentally depend on the availability of credible, high-quality 

training data from which they can learn. The performance of these models is heavily influenced by the 

quality and quantity of the data used during training. High-quality datasets are essential for ensuring 

that the models can generalize well to unseen data and perform effectively across various tasks. This 

requirement poses several challenges, including the need for substantial financial investment, 

significant computational resources, and the establishment of robust data management infrastructures.  

  

The process of curating high-quality training data often involves extensive data collection, cleaning, 

and preprocessing, which can be both time-consuming and costly. This demands large-scale 

investments in data acquisition strategies, which may include purchasing datasets, conducting surveys, 

or leveraging user-generated content (although artificially created data is now taking on ever-

increasing role, even though it comes with the inherent risk of data poisoning). Additionally, the 

computational power required to train large-scale Transformer models necessitates the use of high-

performance data centers equipped with advanced hardware, such as Graphics Processing Units 

(GPUs) or Tensor Processing Units (TPUs). And all of these issues stand in the way of undertaking 

new research in this area, even before one even begins to consider downstream problems such as 

ethical considerations, potential data bias, and data governance policies.  
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 We are thus led naturally to consider minimalistic Transformer implementation for research and 

study purposes. Inspired by the recent success of DeepSeek, who demonstrated in practice that 

ChatGPT-like performance is possible on commodity PC hardware, we undertook the development 

of an even more minimalistic Transformer implementation that we have called EasyGPT. The rest of 

this paper concentrates on the design of EasyGPT, together with the results that we have obtained.   

2.1 EasyGPT System Design  

EasyGPT has been implemented as a series Python-language modules that leverage Python’s vast 

ecosystem of AI and ML libraries as much as possible. This approach was taken for several reasons, 

including the fact that it allowed the project to focus on high-level system-level design and 

development, reducing development time and technical debt [1], improving maintainability, whilst also 

benefiting from the collective expertise and optimized implementations of the open-source community, 

since existing libraries have already been largely tested, validated, and refined.  

 

The decision to use Python was further validated by the existence of pre-trained Python-based AI 

models that allowed us to align with our original objective of developing a simulator that could be run 

on minimalistic PC-level hardware. The choice then had to be made between the various open-source 

platforms that exist today; we investigated the most popular of these in terms of technical 

comprehension. 

  

Platform  Comprehensiveness  Ease of Use  Popularity  

Hugging Face  Extensive library of 

pretrained models, datasets, 

and tools for NLP and 

beyond.  

Highly user-friendly with 

excellent documentation and 

community support.  

Extremely popular, widely adopted 

across academia and industry.  

TensorFlow  Comprehensive framework 

for building and deploying 

ML models across domains.  

Moderate learning curve but 

highly versatile with strong 

community support.  

Very popular, especially among 

deep learning practitioners.  

OpenVINO  Focused on optimizing and 

deploying AI models on Intel 

hardware.  

Moderate ease of use; 

requires familiarity with 

hardware optimization.  

Popular in industries requiring 

efficient AI deployment on Intel 

devices.  

Stanford NLP Group  Renowned for cutting-edge 

NLP tools like CoreNLP.  
Advanced tools but less 

beginner-friendly compared 

to others.  

Popular in academic and research 

settings.  

Spacy  Comprehensive NLP library 

with pre-trained pipelines and 

customization options.  

Extremely user-friendly and 

well-documented.  
Highly popular among developers 

and researchers.  

AllenNLP  Focused on NLP research 

with tools for deep learning-

based tasks.  

Moderate ease of use; geared 

towards researchers.  
Popular in the NLP research 

community.  

  

Table 2: Comparison of open-source pre-trained models  
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ease of use and popularity in the AI research community (Table 2) and settled for Hugging Face as it 

ranked highest in all three of these criteria.  

 

Finally, we had to choose from Hugging Face’s set of pre-trained models and datasets. In keeping with 

our objective of running our simulator on commodity GPU-equipped PC hardware, we selected 

DistilGPT2 2  as the transformer model and the DailyDialog 3  dataset for training; this combination 

represents an optimal choice due to its balance of computational efficiency, model performance, and 

dataset suitability for dialogue tasks. Although it is a distilled version of GPT-2 (which is decoder-

only), DistilGPT2 is actually a mixed encoder-decoder model, which in its standard form is primarily 

used in decoder-only form. It comprises 6 layers, 12 attention heads and 82 million parameters, making 

it significantly lighter than larger Hugging Face models like GPT-2 (124 million parameters) or BERT-

base (110 million parameters), which demand greater memory and computational resources that may 

exceed the capabilities of a typical mid-range GPU. This lightweight architecture enables efficient 

fine-tuning within the hardware constraints while retaining strong language generation capabilities.  

The DailyDialog dataset, consisting of 13,118 multi-turn dialogues, is relatively compact compared to 

larger datasets like OpenSubtitles4 or Cornell Movie Dialogs5, which contain millions of utterances 

and require substantial preprocessing and storage. Its focus on everyday conversational scenarios 

aligns well with the goal of training a dialogue response generation model, and its manageable size 

ensures that tokenization, data loading, and training can be performed efficiently on mid-range 

hardware without excessive disk I/O or memory overhead.   

2.1.1 Model Architecture  

Our Python implementation introduced specific modifications to DistilGPT2 in order to enhance its 

suitability for dialogue response generation on the DailyDialog dataset, as well as optimize it for the 

constraints of mid-range hardware. The model architecture is presented in pseudo-code form in Figure 

2, and in schematic form in Figure 3.  

2.1.2 Dataset and Data Loading  

The script leverages the DailyDialog dataset, loading it via the Hugging Face Datasets library. 

Dialogues are preprocessed to extract input-response pairs by iterating through each dialogue and 

pairing consecutive utterances, separated by the [SEP] token. Both training and validation splits are 

processed in this manner. To expedite experimentation, the script subsamples the training and 

validation datasets to a maximum of 20,000 and 5,000 examples, respectively, after shuffling for 

randomness   

 
2 https://huggingface.co/distilbert/distilgpt2  
3 https://huggingface.co/datasets/roskoN/dailydialog  
4 https://www.opensubtitles.org  
5 https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html  
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2.1.3 Configuration & Setup  

The script begins by establishing a flexible experimental environment through command-line argument 

parsing, allowing users to specify essential hyperparameters6 such as learning rate, number of epochs, 

batch size, gradient accumulation steps, dropout rate, sequence length, and experiment name. Logging 

is configured for informative output, and the script automatically detects and utilizes GPU resources 

if available, defaulting to CPU otherwise.  

First, we froze the first four layers during training to reduce computational load and focus finetuning 

on the upper layers, which are more adept at capturing task-specific patterns – for the purposes of this 

first implementation, the freezing of lower transformer layers was a strategic choice for efficient 

domain adaptation.  

2.1.4 Tokenization  

Tokenization is handled using Hugging Face’s AutoTokenizer for the DistilGPT2 model. The script 

introduces a custom separator [SEP] token to delineate input-response segments within dialogue pairs, 

ensuring the model can effectively process the structured DailyDialog format and focus attention on 

the nuances of dialogue modeling by distinguishing between turns in conversation. If this token is not 

already present, it is added to the tokenizer’s special tokens, and the model’s token embeddings are 

resized accordingly. The tokenizer is set to pad sequences to a uniform length using the model’s end-

of-sequence token, and truncation is applied to maintain the specified maximum sequence length.  

2.1.5 Dropout Rates  

Dropout rates – which determine how many neurons are ignored during training – were adjusted via 

model configuration parameters to mitigate overfitting on our subsampled dataset. The model 

configuration is updated to reflect the user-specified dropout rates for attention, residual, and 

embedding layers, enhancing regularization during training.  

2.1.6 Training Loop  

Training is orchestrated using Hugging Face’s Trainer class, which manages the forward and backward 

passes, evaluation, and checkpointing. Training arguments are set to match the user’s configuration, 

including batch sizes, learning rate, weight decay, gradient accumulation, and evaluation frequency. 

The script evaluates the model at regular intervals and saves checkpoints, including the best-

performing model based on evaluation loss. Mixed-precision training is enabled if a compatible GPU 

is detected, improving efficiency. 

 

 
6 In this context, “hyperparameters” are configuration setting that are fixed before model training commences, and 

which control the learning process; this distinguishes them from the model parameters (such as weights) that are  

directly learned from the training data.  
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Algorithm Outline: Fine-Tuning a Pre-Trained Language Model  

  Input:  

• dataset: a dataset of dialogues (e.g. DailyDialog)  

• model_name: the name of the pre-trained language model (e.g. distilgpt2)  

• device: the device to use for training (e.g. GPU or CPU)   Output:  

• fine_tuned_model: the fine-tuned language model  

• training_history: the training history of the model   Procedure:  

1. Load Dataset:  o  Load the dataset dataset and preprocess it to create input-response pairs.  

o Split the dataset into training and validation sets.  

2. Initialize Model and Tokenizer:  o  Initialize the pre-trained language model model with the specified model_name. 

o  Initialize the tokenizer tokenizer with the specified model_name.  

o Add a custom [SEP] token to the tokenizer.  

3. Configure Model:  o  Configure the model with the specified hyperparameters (e.g. attention dropout, residual 

dropout, embedding dropout).  

o Freeze the first 4 layers of the model.  

4. Tokenize Dataset:  o  Tokenize the input-response pairs in the training and validation sets using the tokenizer.  

o Create a tokenized dataset train_dataset and val_dataset.  

5. Save Token Frequencies:  o  Save the token frequencies of the training dataset to a file token_freq.json.  

6. Define Training Arguments:  o  Define the training arguments training_args with the specified hyperparameters 

(e.g. number of train epochs, batch size, learning rate).  

7. Initialize Trainer:  o  Initialize the trainer trainer with the model, training arguments, and tokenized datasets.  

8. Start Training:  o  Start training the model using the trainer.  

9. Save Final Model:  o Save the fine-tuned model to a file fine_tuned_distilgpt2.  

10. Save Training History:  o  Save the training history to a file training_history.json.  

  

Figure 2: EasyGPT pseudo-code  
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2.1.7 Validation  

Validation is integrated into the training loop, with evaluation loss computed at regular intervals 

specified by the user. The script tracks both training and validation losses, facilitating monitoring of 

overfitting and generalization throughout the fine-tuning process. The best model checkpoint is 

selected based on the lowest evaluation loss.  

2.1.8 Inference & Generation  

Since the script is primarily focused on training and evaluation, in this version, it does not include 

explicit routines for inference or text generation post-training. However, the final fine-tuned model 

and tokenizer are saved, enabling downstream inference and generation tasks to be performed using 

standard Hugging Face pipelines or custom scripts.  

2.1.9 Data Export  

Upon completion of training, the script exports several artifacts. The fine-tuned model and tokenizer 

are saved, and training logs are compiled into a JSON file, capturing the training and evaluation loss 

histories as well as token frequency counts from the training set. This structured export enables 

subsequent analysis and visualization.  

2.1.10 Additional Features  

A notable feature is the computation and export of token frequency statistics from the training set, 

which can be valuable for analyzing model behavior and dataset characteristics. The script’s 

modularity, with parameterized configuration and robust logging, supports systematic experimentation 

and reproducibility.  

2.2 EasyGPT Performance  

The performance of any chatbot model is a crucial aspect of its overall effectiveness, as it directly 

impacts the quality of the conversations it can engage in. Given the complexity of natural language 

processing tasks, any model's performance should be evaluated on multiple performance-based 

objective metrics, and not just subjective measures that inevitably ensue over the course of a human-

machine conversation.   

 

As the Transformer architecture has been shown to be highly effective in a variety of NLP tasks, 

including language translation, text summarization, and dialogue generation, we should expect that the 

model will be able to learn the patterns and structures of language, and generate responses that are not 

only grammatically correct but also contextually relevant. However, such an undertaking would 

necessarily mandate the availability of large, high-quality training data, significant computing 

resources, and subjective supervision of the responses by humans.  

  

Fortunately, various objective performance metrics exist that can measure a model’s ability to generate 

responses that are coherent and relevant to user input prompts, without recourse to such resources. It 

was therefore decided to restrict all model testing to the computation of such metrics and evaluate 
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actual text generation in subsequent papers in this series. This section discusses the results of tests that 

we carried out which demonstrate the effectiveness of our approach. A secondary benefit of this 

approach is that by initially restricting ourselves to an evaluation only of the model’s performance 

metrics, it is possible to gain a comprehensive understanding of its strengths, weaknesses and optimal 

settings, which may assist in the identification of areas for further improvement, such that future text 

generation tasks may be simplified.  

  

We opted to test the model’s performance by running a series of hyperparameter-tuning experiments. 

In designing these experiments, we were motivated to deliberately adopt a minimalist approach to both 

training and computational power – clearly, if the model performs reasonably well on low-spec 

hardware with just enough training data to ensure convergence in the chosen benchmarks, it stands to 

reason that it would do even better with significantly more powerful computing hardware and larger 

amounts of training data. The hyperparameter-tuning process involved fine-tuning the model with 

specified hyperparameters and storing the resulting training logs for later analysis by visualization 

scripts. The experiments aimed to balance training stability and convergence speed while ensuring 

effective learning of conversational patterns, and we discuss these in detail next.   

2.2.1 Experiment 1: Impact of Learning Rate on Model Performance  

Experiment 1 was designed to investigate the effect of varying the learning_rate hyperparameter across 

the three values of 10−5, 5 × 10−5, and 10−4. Analysis of the training dynamics revealed distinct 

behaviors across the learning rates.   

 

From Figure 4, we observe that for a learning rate value of 10−5, the training loss decreased gradually 

from 3.5 to approximately 2.25 over 35 steps, with the validation loss consistently lower, dropping 

from 2.25 to 1.90, suggesting potential underfitting due to the conservative learning rate. The baseline 

learning rate of 5 × 10−5demonstrated a more stable convergence, with the training loss decreasing 

from 3.5 to 2.25 over 60 steps and the validation loss mirroring this trend, reducing from 2.25 to 1.90, 

indicating a balanced learning process. Conversely, the learning rate of 10−4 exhibited the fastest initial 

convergence, with the training loss dropping to 2.25 within 12 steps; however, minor fluctuations 

around step 5 hinted at potential instability, and the validation loss closely tracked the training loss, 

decreasing from 2.25 to 1.95, raising concerns about overfitting with prolonged training.   
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2.2.2 Experiment 2: Effect of Training Epochs on Model Performance  

Experiment 2 was conducted to evaluate the impact of varying the number of training epochs on the 

model’s ability to learn conversational patterns effectively and aimed to determine the optimal number 

of epochs for achieving a balance between sufficient learning and computational efficiency while 

avoiding overfitting. Three configurations were tested: 1-epoch, 3-epochs (baseline), and 5-epochs. 

The training was performed using the previously ascertained optimal learning rate value of 5 × 10−5.   

 

The training dynamics and validation loss plots in Figure 5 provide insights into the model’s learning 

behavior across the different epoch settings. For the 1-epoch configuration, the training loss decreased 

rapidly from 3.5 to approximately 2.25 within 12 steps, with the validation loss closely tracking this 

trend, dropping from 2.25 to 1.95 over 12 evaluation steps. However, the limited training duration 

suggests potential underfitting, as the model may not have had sufficient time to capture complex 

patterns in the data. The baseline configuration with 3 epochs exhibited a more stable and extended 

learning trajectory, with the training loss decreasing from 3.5 to 2.25 over 60 steps and the validation 

loss reducing from 2.25 to 1.90 over 60 evaluation steps, indicating a well-balanced learning process. 

In contrast, the 5-epoch configuration showed a similar initial decrease in training loss from 3.5 to 2.25 

within the first 35 steps, but the validation loss, while decreasing from 2.25 to 1.90, displayed 

fluctuations toward the end, suggesting the onset of overfitting as the model may have begun to 

memorize the training data.  

  

  

  

      

learning_rate =  10 − 5   learning_rate =   5 × 10 − 5 
  ( baseline )   learning_rate =  10 − 4   
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2.2.3 Experiment 3: Influence of Effective Batch Size on Model Performance  

Experiment 3 was designed to assess the impact of varying the effective batch size on the fine-tuning 

of the model, with the goal of optimizing its conversational performance. Three effective batch sizes 

were tested: 16 (achieved with a per-device batch size of 8 and gradient accumulation steps of 2), 32 

(with a per-device batch size of 16 and gradient accumulation steps of 2), and 48 (with a per-device 

batch size of 16 and gradient accumulation steps of 3). The training was conducted with the learning 

rate set to 5 × 10−5and the number of epochs fixed at 3, as determined from prior experiments.  

 

As we see in Figure 6, the training dynamics and validation loss plots reveal distinct patterns  

across the different batch sizes. For the effective batch size of 16, the training loss decreased sharply  

from 3.5 to approximately 2.25 within 25 steps, with the validation loss mirroring this trend, dropping 

from 2.20 to 1.95 over 20 evaluation steps. However, the smaller batch size resulted in a relatively 

noisy training loss curve, indicating potential instability due to higher variance in gradient updates. 

The batch size of 32 demonstrated a more stable learning trajectory, with the training loss decreasing 

from 3.5 to 2.25 over 35 steps and the validation loss reducing from 2.25 to 1.90 over 35 evaluation 

steps, suggesting a balanced trade-off between gradient noise and computational efficiency. The 

effective batch size of 48 showed the smoothest and most extended convergence, with the training loss 

decreasing from 3.5 to 2.25 over 70 steps and the validation loss dropping from 2.25 to 1.90 over 70 

evaluation steps. However, the extended training duration and minor fluctuations in the validation loss 

toward the later steps hinted at a risk of overfitting, as the larger batch size may lead to overly smoothed 

gradients that reduce the model’s ability to generalize.  

  

  

  
  

      

1 - epoch   3 - epoch   5 - epoch   
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2.2.4 Experiment 4: Impact of Dropout Rate on Model Generalization  

Experiment 4 was conducted to investigate the effect of varying dropout rates on the fine-tuning of the 

model. Three dropout rates were tested: 0.1, 0.3, and 0.5. The training was executed using the 

previously established learning rate of 5 × 10−5, the number of epochs at 3, and the effective batch size 

at 32. This experiment aimed to identify the optimal dropout rate that balances regularization to prevent 

overfitting while ensuring the model retains sufficient capacity to learn conversational patterns.  

 

The training dynamics and validation loss plots in Figure 7 provide insights into the model’s behavior 

across the different dropout settings. For the dropout rate of 0.1, the training loss decreases rapidly 

from 5.0 to 2.5 within 35 steps, but the validation loss, starting at 2.50, only drops to 2.20 over 35 

evaluation steps, indicating potential under-regularization as the model may have overfit to the training 

data. The baseline configuration with a dropout rate of 0.3 shows a more balanced learning trajectory, 

with the training loss decreasing from 3.5 to 2.25 over 35 steps and the validation loss reducing from 

2.25 to 1.90 over 35 evaluation steps, suggesting effective regularization that improved generalization. 

The dropout rate of 0.5 exhibits a slower convergence, with the training loss decreasing from 3.5 to 

2.5 over 35 steps and the validation loss dropping from 2.45 to 2.20 over 35 evaluation steps, indicating 

that the higher dropout rate may have overly regularized the model, leading to underfitting and 

hindering its ability to capture complex patterns in the data.  

  

  

  
  

      

Batch size = 16   Batch size =  32   Batch size =  48   
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2.2.5 Experiment 5: Effect of Maximum Sequence Length on Model Performance  

Experiment 5 was designed to evaluate the impact of varying maximum sequence lengths on the model, 

aiming to optimize its ability to handle conversational contexts of different lengths. Three maximum 

sequence lengths were tested: 32, 50 (presumed baseline), and 64. The training was performed using 

the number of epochs at 3, the effective batch size at 32, and the dropout rate at 0.3.   

 

From Figure 8, the training dynamics and validation loss plots highlighted distinct behaviors across 

the tested sequence lengths. For the maximum sequence length of 32, the training loss decreases 

sharply from 3.25 to 1.75 over 35 steps, and the validation loss drops from 1.80 to 1.55 over 35 

evaluation steps, indicating rapid convergence. However, the shorter sequence length likely limits the 

model’s ability to capture longer conversational dependencies, as reflected in the slightly higher 

validation loss compared to the presumed baseline; the latter, with a maximum sequence length of 50, 

shows a balanced learning curve, with the training loss decreasing from 3.5 to 2.25 over 35 steps and 

the validation loss reducing from 2.25 to 1.90 over 35 evaluation steps, suggesting an effective 

compromise between capturing context and maintaining computational efficiency. The maximum 

sequence length of 64 exhibits a slower convergence, with the training loss decreasing from 4.25 to 

2.75 over 35 steps and the validation loss dropping from 3.1 to 2.7 over 35 evaluation steps. The higher 

initial losses and slower convergence suggest that the longer sequence length increase the complexity 

of the optimization problem, potentially leading to underfitting due to insufficient training steps 

relative to the increased context.  

  

  

  
  

      

Dropout rate = 0. 1   Dropout rate = 0.3   Dropout rate = 0. 5   
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3.0 Analysis of Convergence Plots  

With the data from the experiments at hand, we are now in a position to make the following 

observations:  

3.0.1 Learning Rate:   

A learning rate of 5 × 10−5 is the most effective for fine-tuning the model, offering a stable and 

consistent reduction in both training and validation losses without the underfitting seen at 10−5 or the 

instability observed at 10−4.   

3.0.2 Epoch Length:   

3 epochs are the most effective for fine-tuning the model, striking an optimal balance between learning 

capacity and generalization, as evidenced by the stable convergence of both training and validation 

losses. The 1-epoch setup was insufficient for the model to fully learn the underlying patterns, while 

the 5-epoch setup showed signs of overfitting, which could degrade performance on unseen data.   

3.0.3 Effective Batch Size:   

An effective batch size of 32 is the most suitable, providing a stable and efficient learning process with 

minimal noise in the training dynamics and consistent generalization performance, as evidenced by 

the validation loss. The batch size of 16, while computationally lighter, introduced excessive noise in 

the training process, potentially hindering convergence stability, whereas the batch size of 48, despite 

its smoother gradients, risked overfitting due to prolonged training and reduced gradient diversity.  

3.0.4 Dropout Rate:   

The dropout rate of 0.3 is most effective, achieving a robust balance between regularization and 

learning capacity, as evidenced by the stable convergence of both training and validation losses. The 

dropout rate of 0.1 was insufficient to prevent overfitting, leading to a larger gap between training and 

  
  

      

Sequence length = 32   Sequence length =  50   Sequence length = 6 4   
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validation losses, while the dropout rate of 0.5 overly constrained the model, resulting in underfitting 

and higher validation loss.   

3.0.5 Sequence Length:   

A maximum sequence length of 50 offers a balanced trade-off between capturing sufficient 

conversational context and maintaining training stability, as evidenced by the consistent reduction in 

both training and validation losses. The sequence length of 32, while computationally efficient, 

constrained the model’s ability to model longer dependencies, potentially limiting its conversational 

coherence. Conversely, the sequence length of 64 increased computational demands and led to slower 

convergence, with higher validation loss indicating a risk of underfitting within the fixed training 

duration.  

3.1 Analysis of Token Distribution Plots  

The token distribution analysis, consistent across all five experiments, highlighted a predominance of 

punctuation and function words (e.g., ".", ",", "you", "?") in the dataset, suggesting a persistent bias in 

the model’s learned representations toward these high-frequency tokens. This emphasizes the need for 

strategies to address the model’s bias toward frequent tokens, such as data augmentation or loss 

weighting, to enhance the quality of generated responses; failure to do so will impact the model’s 

ability to generate diverse and contextually rich responses. These trends necessitate a deeper 

investigation into the tokenization process, the impact of sequence length on token counts, and the 

implications for model training.  

3.1.1 Impact of Sequence Length on Token Frequencies  

The token distribution plots provided in Figure 9 illustrate the frequency of the top 20 tokens, with 

sequence lengths of 32, 50, and 64 tokens, respectively. While the shape of the distributions – namely, 

the relative ordering of tokens and the proportionality of their frequencies – remains consistent across 

the three sequence lengths, a closer inspection reveals that the absolute frequency values on the x-axis 

increase with the sequence length. Specifically, the maximum frequency (for the token " .") rises from 

approximately 35,000 at max_length=32 to 40,000 at max_length=50, and further to 45,000 at 

max_length=64.   

 

The observed increase in absolute token frequencies with sequence length can be attributed to the 

interaction between the max_length parameter and the tokenization process in the script. The 

DistilGPT2 tokenizer, which uses Byte-Pair Encoding (BPE), tokenizes the input text into sub-word 

units, and the script preprocesses the DailyDialog dataset into input-response pairs separated by a token. 

The max_length parameter in the tokenize_function dictates the maximum length of each tokenized 

sequence: sequences longer than max_length are truncated, while shorter sequences are padded with 

the end-of-sequence (EOS) token (ID 50256, </s>). In the model, token frequencies are computed by 

counting all input_id values in the tokenized dataset, which includes both the original tokens, and any 

padding tokens added to reach max_length. When max_length is smaller (e.g., 32), longer dialogues 

are more likely to be truncated, reducing the total number of tokens retained in the dataset. Conversely, 

a larger max_length (e.g., 64) allows more of the original dialogue to be preserved before truncation, 
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resulting in a higher total token count. However, since the plots provided here do not include the EOS 

token in the top 20, this suggests that the frequency counts were computed before padding, focusing 

solely on the lexical tokens. The increase in frequencies with max_length thus reflects the fact that 

longer sequence lengths preserve more tokens from the original dialogues, leading to higher absolute 

counts for all tokens while maintaining the same relative distribution.  

3.1.2 Token Distribution Characteristics  

The token distribution across all three plots exhibits a highly skewed profile; this is a hallmark of 

natural language datasets. The most frequent token, " .", corresponds to the period (.), reflecting the 

sentenceending structure prevalent in the  dataset’s conversational turns. Its frequency increases from 

35,000 at max_length=32 to 45,000 at max_length=64, a proportional rise consistent with the overall 

trend. Following " .", the next most frequent tokens include common conversational words such as 

"you" (~25,000 to 30,000), "?" (~20,000 to 25,000), "I" (~15,000 to 20,000), and "the" (~15,000 to 

20,000), with counts similarly scaling with sequence length. The absence of special tokens like [SEP] 

or the [EOS] token (</s>) in the top 20 list indicates that the frequency counts were likely computed 

on the tokenized text before padding, as opposed to the previous run where the [EOS] token (ID 50256) 

dominated due to padding. The consistent shape of the distribution – where the same tokens appear in 

the same order with proportional frequency increases – suggests that the underlying lexical 

composition of the dataset remains stable, and the effect of max_length is to scale the total number of 

tokens retained by reducing truncation.  

3.1.3 Implications for Model Training  

The scaling of token frequencies with sequence length has significant implications for training the 

DistilGPT2 model on this dataset. A larger max_length (e.g., 64) preserves more of the original 

dialogue context by minimizing truncation, potentially improving the model’s ability to learn longer 

range dependencies in the data. However, this comes at the cost of increased padding for shorter 

sequences, which would inflate the frequency of the [EOS] token in the training data (though not 

reflected in these pre-padding frequency plots). Conversely, a smaller max_length (e.g., 32) reduces 

padding but risks losing critical context in longer dialogues, which could impair the model’s 

performance on tasks requiring a deeper understanding of conversational flow. The proportional 

increase in token counts suggests that the model will see more instances of each token as max_length 

increases, which may enhance learning of frequent patterns (e.g., sentence-ending punctuation, 

common words) but could exacerbate the underrepresentation of rare tokens due to the long-tail 

distribution. Researchers should weigh these trade-offs when selecting an appropriate max_length, 

considering both the computational cost (longer sequences increase memory usage) and the task 

requirements (e.g., whether longer context is necessary for dialogue generation).  

3.1.4 Conclusion  

In conclusion, the token distribution plots for sequence lengths of 32, 50, and 64 tokens reveal a 

consistent shape but a clear scaling of absolute frequencies with max_length. This scaling arises 

because larger sequence lengths reduce truncation, preserving more tokens from the original dialogues, 

while the relative distribution remains unchanged due to the fixed tokenization process and dataset 

structure. The dominance of punctuation and common conversational words underscores the dataset’s 

conversational nature, but the absence of special tokens in the frequency counts highlights a 
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methodological difference from the previous run, focusing on lexical content before padding. For 

future work, researchers should explore the impact of max_length on model performance, particularly 

in terms of context preservation versus computational efficiency, and consider strategies to mitigate 

the underrepresentation of rare tokens, such as targeted data augmentation or vocabulary adjustments. 

Additionally, comparing token frequencies before and after padding can provide a more 

comprehensive view of the data as seen by the model during training.  

4.0 Concluding Remarks  

This paper has introduced EasyGPT, our first implementation of a transformer using the pre-trained 

DistilGPT2 model on the DailyDialog dataset. These choices demonstrate a pragmatic approach to 

dialogue response generation, effectively balancing computational efficiency with performance on 

midrange PC hardware.    

 

The model, with its 6-layer architecture, 12 attention heads, and 82 million parameters, was 

strategically adapted by freezing the first four layers to reduce computational demands while fine-

tuning the upper layers for task-specific patterns. Additionally, the embedding layer was resized to 

incorporate a custom [SEP] token, facilitating the processing of input-response pairs, and dropout rates 

were increased to 0.3 across attention, residual, and embedding layers to mitigate overfitting on the 

subsampled dataset of 20,000 training and 5,000 validation samples. The experimental strategies were 

chosen to provide a robust framework to evaluate the model’s sensitivity to hyperparameters.  

 

Observations from the model design and experiments highlight both strengths and limitations. The 

decision to freeze the first four layers effectively reduced the computational burden, enabling training  
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on mid-range hardware, but it may have constrained the model’s ability to adapt deeply to the dialogue 

task. The token distribution analysis further revealed a highly skewed dataset, with punctuation (e.g., 

" .") and common words (e.g., "you", "I") dominating frequencies, scaling proportionally with 

sequence length (from 35,000 to 45,000 for " .") due to reduced truncation at larger max_length values.   

Our final conclusion is that this implementation achieves efficient qualitative dialogue modeling 

within hardware constraints, but the results indicate potential underfitting or limited task complexity, 

as validated by the lower validation loss compared to training loss, warranting further exploration of 

model capacity and training duration.  
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4.1 Future Directions  

Having now established that it is possible to design, develop and experiment with a viable working 

transformer model by leveraging existing open-source models and datasets, we plan to proceed along 

two distinct approaches as follows:  

1. Enhancements to the existing model  

The following steps will provide a more comprehensive understanding of the model’s capabilities and 

guide refinements for improved dialogue generation performance.  

• In the next phase of fine-tuning our model, we plan to extend the training duration and dataset size to 

better leverage the learning rate schedulers and assess their impact on model performance. Increasing 

the number of epochs from 3 to 5 or 10 and expanding the training set beyond 20,000 samples (e.g., 

using the full DailyDialog dataset or a larger subsample of 50,000 samples), would allow the model to 

train longer.   

• We will incorporate a plugin system to allow for schedulers to be incorporated into the code. This 

present implementation did not use scheduling as part of a strategic decision to keep the 

hyperparameter count optimally low. A scheduler which dynamically adjusts the learning rate based 

on training progress, could significantly improve the convergence stability, and improve both the 

performance generalization and training efficiency.  

• Once the above are completed, we shall start to unfreeze additional layers to increase the model’s 

capacity to adapt to the task of text generation and monitor how this affects underfitting or overfitting 

during training.  

• We will investigate the token distribution by applying data augmentation to address the 

underrepresentation of rare tokens – a longer-term goal is to have a plugin system that allows for user-

definable datasets.  

• Finally, we will evaluate the model’s generation quality through qualitative and quantitative measures. 

A script to generate sample responses from the fine-tuned models for each scheduler will  

be developed, followed by evaluation using metrics such as BLEU, ROUGE, or human assessment to 

determine if scheduler differences manifest in the quality of generated dialogue.   

2. Variations to the underlying model  

EasyGPT was designed from the outset as a modular framework, and it would be relatively easy to 

swap the DistilGPT2 model with either existing pre-trained models or even custom ones. As such, it 

will be possible to use multi-lingual models to allow, for instance, dialogs in other languages, such as 

Arabic7, through the use of a multilingual tokenizer and relevant dialog files.   

 

 
7 There already exist several pre-trained Arabic NLP models on Hugging Face, e.g., CAMeLBERT, available at:  

https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix  
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We shall report on the outcomes of these planned enhancements and variations in future publications 

in this series.  
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