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Abstract 

High-frequency trading (HFT) markets, characterized by high and frequent price fluctuations, 

necessitate the use of anomaly detection mechanisms to monitor the market and ensure the efficacy of 

the trading system. This paper aims to discuss the possibility of improving predictive analytics in HFT 

using quantum computing with the help of the Quantum Variational Autoencoder (QL-VAE). As a 

result, we propose a new direction for further research on quantum VAEs in HFT that involves their 

direct comparison with classical VAEs. The application of quantum models for mastering the intensive 

data flow of HFT is conditioned by the advantages of quantum computation in comparison to classical 

ones, which are more suitable for handling multidimensional data arrangements and intricate topologies. 

Our detailed study methodology involved examining various aspects of HFT data, such as order book 

features and stock price characteristics. We normalized all the data and reduced some of its dimensions. 

We established quantum VAEs using Pennylane, and configured the classical VAEs using 

TensorFlow.  When it comes to market anomalies, the results of the comparative analysis showed higher 

accuracy, recall, and F1 rate in quantum VAEs compared to classical models when it comes to the 

analysis of market anomalies. Therefore, the quantum model's ability to handle high-dimensional data 

makes it a better fit for HFT than classical methods. These studies suggest that quantum VAEs could 

significantly improve anomaly detection in the financial market. 
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1. Introduction 

 

High-frequency trading (HFT) is one of the most important innovations in the financial markets, 

according to the definition, which entails fast trade in information and computational techniques [1]. It is 

important to realize that each market raises its level of exposure to potentially catastrophic financial loss 

and betrays the signs of its credibility when it is impossible to detect any symptoms of an anomaly at the 

preliminary stage [2].Aberrations within HFT could mean fraud, manipulation, or even a drastic change 

of attitude among the traders [3]. 

Conventional methods for detecting anomalies in HFT have not kept up with the increasing complexity 

and size of data, necessitating the exploration of alternative techniques [4]. 

The anomaly detection in HFT is difficult, especially when dealing with high dimensional features and a 

rapidly changing market environment [2]. Typically, we use deep learning techniques and conventional 

machine learning models to analyze high-frequency data, but these models often struggle to capture the 

dynamics of the data [5]. Traditional approaches face additional challenges due to the large amount of 

trading data and the need for real-time data processing [6]. 

The new developments in machine learning and quantum computing could be useful in proposing new 

solutions to improve anomaly detection in HFT [7]. People have widely used generative models, 

especially variational autoencoders (VAEs), for anomaly detection [8]. Research has proven that AEs 

can grasp intricate non-linear data distributions and identify anomalous regions [9]. However, the 

current high-frequency trading environment has not extensively tested them, and their efficiency 

remains an important and ongoing research question [10]. 

Machine learning gets dozens of new opportunities and improvements due to the appearance of quantum 

computing in the field. Quantum Variational Autoencoders, also known as Quantum VAEs, utilize 

quantum approaches to handle high-dimensional data in a more efficient manner than their classical 

counterparts [11]. This development has the potential to improve anomaly detection performance 

because it seeks to correct the failings of classical frameworks [10]. 

A review of recent research on the subject reveals several methods of identifying anomalies in HFT. 

Traditionally, we used statistical tools and computational algorithms to detect trading anomalies. 

Nevertheless, these approaches are incongruous with the characteristics of the high-dimensional and 

dynamic HFT data [2]. Deep learning techniques (VAEs) have enhanced HFT scenarios, but more effort 

is required to improve anomaly detection performance [4]. 

In recent years, quantum computing has advanced, providing a new opportunity to improve predictive 

analytics [5]. In general, quantum computing algorithms show the possibility for faster data processing 

velocity and better predictive models for changing conditions and new patterns, which would 

significantly increase the chances of identifying an anomaly [12]. As a result, quantum VAEs are being 

considered a new, promising solution to the problems associated with the use of classical VAEs in HFT 

applications. 

Quantum VAEs for anomaly detection are a relatively new concept, with only a few articles exploring 

its application in the financial markets. Previous investigations suggest that the use of quantum VAEs 

may be superior to classical ones, as they can leverage quantum parallelism and entanglement to process 
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more complex data structures effectively [4]. provides a promising platform for innovative 

breakthroughs in financial analysis. 

This work shows that the benefits of extending quantum VAEs are not merely theoretical but quite 

tangible [7]. Many of these models leverage advanced quantum computing to analyze big data more 

proficiently than other computing systems. 

This efficiency is very important in high-frequency trading, where the faster and more efficient 

recognition of anomalies enhances the chances of having better trades and risk management.  

The hierarchy of research in this domain typically involves several key stages: first, the inability of 

classical anomaly detection methods in HFT; second, the applicability of VAEs for anomalies; third, the 

possibilities of quantum VAEs over classical; and last, applying quantum VAEs in an actual HFT 

environment.  

The use of quantum VAEs to enhance anomaly detection plans makes it easier for organizations to 

consider better analytical tools that are more efficient. In the future development of the field of quantum 

computing, the findings of using quantum VAEs can actually establish new standards for the detection 

of anomalies in high-frequency trading and other complicated financial systems [7].  

This paper seeks to fill the existing literature void on anomaly detection techniques in high-frequency 

trading by comparing Quantum VAEs with the standard VAEs. In this paper, we discuss the application 

of QML for high-frequency trading and use the models’ performance on the HFT data set to show that 

quantum methods outperform classical ones. This research contributes by utilizing a relatively new 

architecture, Quantum VAEs, in a field where quantum computing for anomaly detection in financial 

markets has not been extensively explored. 

The aim of this research is to enhance the predictive-analytics model of HFT through the application of 

Quantum VAE, thereby improving anomaly detection, and to compare it with classical VAE methods. 

The aim of this research is to enhance the field of financial analytics by integrating quantum computing 

into one of the anomaly detection techniques, potentially contributing to the advancement of methods 

based on quantum machine learning in the finance domain. 

2. Literature Review 

High-frequency trading (HFT) has become a fundamental component of financial market innovation due 

to advancements in technology and challenges facing the financial markets today [13]. 

The HF trading is the execution of a large number of orders at a very high speed; this results in the 

generation of a large amount of data that requires real-time processing [14]. Anomaly detection is an 

integral part of HFT because it entails detecting changes in the standard trading patterns that signal such 

problems as manipulations or fraud attempts, as well as certain system failures [14]. Anomaly detection 

in this context, therefore, becomes even more daunting due to the size and speed of the data, and 

requires methods designed to work on high-dimensional and constantly evolving data [15].  

Statistical’ detection in trading at an early period of development relied on statistical models and 

heuristics. We used measures like z-scores, moving averages, and exponential smoothing fitting to 

analyze the trading pattern and check for abnormalities [16]. Though these methods offered a scope for 
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the detection of anomalies, they were unable to some extent to cope with the volatility of the high-

frequency trading data. When trading strategies were relatively simple, these macro-driven approaches 

to trading were adequate, but as trading techniques developed and enhanced for the trading complexity 

required for modern market conditions began to appear, the weaknesses of these types of approaches 

became apparent, and a demand for better analytical methodologies emerged[12].  

The use of machine learning algorithms in anomaly detection has done better than traditional statistical 

methods in improving the former's performance [14]. We have utilized classification techniques like 

decision trees, support vector machines (SVM), and random forests to scrutinize trading data and 

identify any anomalous activities [17]. These methods involve the use of labeled datasets to train; this is 

a big problem in high frequency trading since labeled samples are scarce and the ground truth labeling is 

not easily obtainable. Nevertheless, the results obtained from supervised learning methods demonstrated 

higher accuracy in anomaly detection compared to traditional methods [18]. 

High-frequency trading has also utilized other machine learning approaches, specifically supervised 

learning strategies, to identify anomalies. Some of the unsupervised machine learning methods includes 

k-means clustering, hierarchical clustering, and principal component analysis (PCA), which are capable 

of achieving the aforementioned tasks in high dimensions even without a data label [15]. Employing 

these methods is most effective when searching for unfamiliar patterns and anomalies in data. However, 

they also have the challenge of dealing with the large amount of data generated in high-frequency 

trading, which implies more research is called for [19].  

VAEs, or Variational Autoencoders, are an effective tool for anomaly detection and work on the idea of 

learning data's complex nature through deep learning [20]. Automotive VAEs are generative models that 

have mapping functions for encoding and decoding the data, making them ideal for learning fine 

features and anomalies from normal patterns. Financial markets attempted to use VAEs to extract data 

representations capable of providing notable results and detecting anomalous trading patterns. Research 

has shown that VAEs can improve accuracy and stability in the discovery of anomalies by learning 

subtler relationships in data than basic methods could uncover [21]. 

A recent analysis of VAEs in the context of financial anomaly detection revealed their ability to 

overcome the difficulties associated with the high dimensionality of data [22]. Through centering 

complex interactions and dependencies in the trading data, VAEs are a much better point of departure 

for analyzing what is normal and what is not. For instance, VAEs applied to stock prices, trading 

volumes, and order book data demonstrated the increase in detection accuracy in comparison with the 

traditional statistical methods [23].  

The integration of deep learning techniques, such as VAEs, into anomaly detection schemes has 

significantly improved over traditional methods [24]. VAEs are able to learn and generalize from large 

sets of data, thus making it possible for them to identify defects that other simpler models may not easily 

pick. It is particularly beneficial in the activity known as 'high-frequency trading' because, in this case, 

instant action and precise identification of deviations are possible to ensure market integrity and 

minimize risks [25]. 

Quantum computing presents new opportunities to improve conventional machine learning algorithms, 

including VAEs. Quantum Variational Autoencoders (Quantum VAEs) apply the concepts of 
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superposition and quantum entanglement, which helps them to solve the high-dimensional data 

problems faster than the classical approach [26]. Quantum VAEs employ quantum circuits to encode 

and process data, with the expectation of enhancing performance in these metrics. In the case of 

anomaly detection, quantum computing integration can naturally solve some of the drawbacks of 

classical methods, such as computational complexity or data handling capacity. 

The initial theoretical studies of quantum VAEs have demonstrated their effectiveness in various fields, 

including picture analysis and language processing. These papers propose that quantum Variational 

Autoencoders are capable of beating traditional VAEs by solving the issues related to computing 

capabilities and data volume. However, there hasn't been sufficient research on their application in high-

frequency trading and financial anomaly detection [27].  

It is imperative to compare the performance of the classical model VAEs and the newly proposed 

quantum VAEs in order to identify the merits of each [28]. The use of such Quantum VAEs in the 

current approach to anomaly detection is quite a turning point in the financial analysis field. Therefore, 

future improvements in quantum computing technology will inevitably impact quantum VAEs, making 

the idea of their application for high-frequency anomaly detection quite plausible [29]. Studying in this 

direction can help to create new benchmarks for anomaly detection and elaborate theories regarding the 

use of QML in finance.  

The application of VAEs and today’s new direction in this field – Quantum VAEs, opens new 

opportunities for increasing the effectiveness and accuracy of anomaly detection methods [30]. Further 

research and studies, along with the conduct of comparative analysis, will play a crucial role in 

advancing the field and securing opportunities for improved financial analytics through the use of 

quantum computing. 

Regarding the research discussed, it is possible to highlight the increasing significance of deploying 

modern ML techniques, including VAEs and QVAEs, for FIN anomaly detection. They align with other 

advancements resulting from the use of modern technologies to address the numerous and complex 

issues in today's trading space [31]. Future work and continued technological advancements will be 

critical for anomaly detection and financial market analysis in the ever-growing field. 

3. Materials and Methods 

In this paper, the research will concentrate on frequency trading (HFT) data in the context of financial 

markets as shown in Table 1. HFTs are defined by their ability to trade and analyze large volumes of 

real-time trade data, which is critical for modeling market phenomena. The research sample is based on 

the data originating from the world’s largest financial exchanges, like Dow Jones and NASDAQ, which 

are famous for high-frequency trading. These exchanges are well-regulated and feature state-of-the-art 

technology that allows them to process large amounts of data and trade in the markets. 
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Quantit

y 

3842.4 3842.6  103 0 3842 3842 1 

3842.8 3843.4 6 49 55 3843 3842 0 

3844 3844.3 7 77 84 3843.8 3842 0 

 

Table 1: High Frequency Trading (HFT) Dataset Collection 

 

The data used in the current study originates from HF trading systems that provide features such as order 

books, prices, and trade volumes. They cover a wide range of market situations and trading 

environments, from high volatility to low liquidity. The investigation is important because financial 

markets are becoming more diverse and unpredictable; as a result, it may be necessary to detect 

anomalies and predict possible market reactions for further tailor-made strategies and financial security. 

Classical VAE Methodology 

Data Preprocessing 

Data pre-processing is therefore important for preparing the dataset for analysis and improving the 

quality of the outcomes. The processing steps include:  

Data Cleaning: This includes issues like missing values and errors in the given data set. Here, missing 

values are treated by interpolations, where missing series values are predicted with the existing data 

series values. This approach assists in ensuring that the data starts and ends at the right point, hence 

eliminating cases of gaps that may hamper the performance of the models. Furthermore, we remove any 

existing noise from the data set to enhance its quality. 

Normalization: To enable the learning process of the VAE, there is always a need to normalize the 

features so that they are on a similar scale. Usually, we use normalization methods like Min-Max or Z-

score normalization for this purpose, ensuring that each feature contributes equally to the model's 

training. This step makes the model unbiased, reduces the problem of convergence, and guarantees that 

the VAE will be able to capture the right features from the data.  

Feature Engineering: We can develop or modify additional variables to potentially contribute 

positively to the given dataset. For example, using derived features such as price changes, degrees of 

fluctuation, or even a simple moving mean can improve understanding of existing trading novelties or 

abnormalities as shown in Fig. 1 below. 
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Fig. 1 Classical Variational Autoencoder Methodology with encoder and decoder 

Classical VAE Implementation 

The classical VAE's implementation involves several key components and steps: 

Architecture: This classical VAE model involves having two primary networks, as shown below.  

Encoder Network: This network has the ability to transform the multiple features in the input data 

space into a lower-dimensional latent space as shown in Fig. 2. The encoder is usually a multi-layer 

perceptron (MLP) with one or more hidden layers. It can use different activation functions, such as the 

exponential linear unit (ELU) and rectified linear unit (ReLU) responsibilities. This means that the 

encoder provides the parameters of a latent space distribution consisting of mean and variance values as 

shown below: 

First Hidden Layer: 

𝜇 = 𝑊𝜇ℎ2 + 𝑏𝜇 
ℎ1 = 𝑅𝑒𝐿𝑈(𝑊1𝑥 + 𝑏1)      (1.1) 

Second Hidden Layer: 

ℎ2 = 𝐸𝐿𝑈(𝑊2ℎ1 + 𝑏2)     (1.2) 

Latent Space Mean and Log-Variance: 

𝑙𝑜𝑔𝜎2 = 𝑊𝜎ℎ2 + 𝑏𝜎           (1.3) 

Latent variable z is specified as: 

𝑧 = 𝜇 + 𝜎 ∗∈, ∈ ~𝑁(0,1)   (1.4) 
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Fig. 2 Classical VAE with Encoder and Latent Layer 

Decoder Network: The decoder network reconstructs the original data from the described latent space 

into its representational form. Similar to the encoder, its structure aims to generate data in the original 

feature space as show in Fig. 3. The decoder uses activation functions appropriate to the type of data in 

the output layer, such as sigmoid activation for binary data or linear activation for positive integer and 

continuous data as shown: 

First Hidden Layer: 

ℎ3 = 𝑅𝑒𝐿𝑈(𝑊3𝑧 + 𝑏3)        (1.5) 

Second Hidden Layer: 

ℎ4 = 𝐸𝐿𝑈(𝑊4ℎ3 + 𝑏4)            (1.6) 

Output Layer: 

𝑥′ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊5ℎ4 + 𝑏5)          (1.7) 

Model Training: To train the VAE, both objectives use the following two loss functions. 

 

Fig. 3 Classical VAE with Decoder and Latent layer 
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Reconstruction Loss: Computes the discrepancy between the observed data and its approximation. 

Usually the simplest reconstruction loss functions are mean squared error (MSE) for the continuously 

distributed data or binary cross-entropy for the binary data. The decoder needs to learn the mapping that 

reconstructs the data from the latent space, and this loss function enforces this.  

Kullback-Leibler (KL): The KL divergence normalizes the learned features by allowing only a tiny 

variance around a standard normal distribution policy. By preventing the Gaussian distribution from 

distorting the learned latent variables, the KL divergence enhances the structure and interpretability of 

the learned latent space as shown in Fig. 4. This regression is critical for keeping the latent space smooth 

and enabling meaningful reconstruction shown: 

𝐾𝐿[𝑞(𝑧|𝑥)||𝑝(𝑧) =
1

2
∑ (𝜇𝑖

2 + 𝜎𝑖
2 − log(𝜎𝑖

2) − 1)𝑑
𝑖=1            (1.8) 

The training process consists of solving these optimization problems for the loss functions using 

gradient-based methods like Adam or RMSprop. Therefore, we perform optimization to tune the model 

parameters, minimizing both reconstruction errors and distances in the latent space as shown: 

 

𝐿(𝑥, 𝑥′) = 𝑅𝑒𝑐𝑜𝑛𝑡𝑟𝑢𝑐𝑡 𝑙𝑜𝑠𝑠 + 𝛽. 𝐾𝐿[𝑞(𝑧|𝑥)||𝑝(𝑧)]              (1.9) 

 

Afterwards, we evaluate the trained VAE model's performance as an anomaly detection algorithm 

 

Fig. 4 Classical VAE with KL divergence normalizes 

 

Anomaly Detection: This process uses reconstruction errors to identify abnormal behavior. The model 

recognizes anomalies as data points with a high reconstruction error because they deviate from the 

typical patterns it has learned. We determine anomalies by calculating an anomaly score, which we 

derive from the reconstruction error, and we need to meet certain cut-off points to classify a data point 

as either an anomaly or a normal point. 

Metrics Evaluation: We use various parameters, such as precision, recall, and F1 score, to evaluate the 

model's performance and determine its ability to detect anomalies. Precision takes the ratio of true 

positives out of all the positives, while recall deals with the true positive to the total number of positive 

cases; hence, the F1 score is simply the harmonic mean of both precision and recall measures. These 

measures aid in model assessment because of their ability to identify significant anomalies in high-

frequency trading data. 
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We select this classical VAE approach because its key advantage is apparent when dealing with intricate 

and high-dimensional data distributions. The VAE operates in this manner. The model encodes the 

presented data using embedding, thereby learning representations of the data, its dependence, and 

dispersion, all of which are crucial for anomaly detection. This approach has the advantage of 

developing a more general and powerful base for detecting anomalies in HFT, as it establishes normality 

through the learning of trading patterns with anything outside these as the set base for anomalies. Since 

it is possible to model and reconstruct the data from the latent space, the conventional VAE is highly 

effective in detecting abnormal market trends, which might be a sign of a large trading activity or 

unpleasant events. The approach's ability to handle vast and intricate data characteristics, along with its 

precision, expedites the detection of market irregularities in high-frequency trading systems. 

Quantum VAE Methodology 

Data Preprocessing 

Data preprocessing for Quantum VAE follows a meticulous process to ensure that the data is suitable for 

quantum computations and effectively models high-frequency trading dynamics: Here, we outline the 

meticulous preparation required for the data used by Quantum VAE, ensuring its suitability for quantum 

computations and its accurate representation of high-frequency trading characteristics: 

Data Cleaning: This step involves cleaning the data to address any potential flaws in the actual data. 

We handle missing values by implementing different interpolation methods in data imputation, thereby 

reducing the likelihood of wide gaps in the model endpoint estimation. Data cleaning also eliminates 

outliers and alters other potentially incorrect entries. 

Normalization: Prior to feature implementation, normalization techniques such as Min-Max scaling or 

z-score normalization align all features within a similar range. Normalization reduces the range of 

various features, enabling quantitative analysis of each one during data analysis. 

Feature Engineering: This entails adding new variables and/or modifying already existing attributes in 

the dataset in such a way that the dataset has the capacity to predict that specific event. Therefore, we 

can use selection methods like dimensionality reduction or data aggregation to pinpoint the crucial 

attributes for data analysis, aiming to spot uncommon patterns. 

However, all of these preprocessing steps are required to clean and scale the inputs for quantum 

algorithms, as well as to present the inputs appropriately to the quantum VAE used throughout this 

thesis. 

Quantum VAE Implementation 

The Quantum VAE model adds quantum computing components to the VAE architecture, bringing fresh 

perspectives on data encoding and anomaly detection. The quantum VAE methodology incorporates 

quantum computing components into the standard VAE design, offering new methods for encoding and 

anomalous pattern detection. 

Architecture: Quantum VAE combines neural networks and quantum circuits with regular neural 

structures. Quantum circuits replace the standard neural networks of the classical VAE in quantum 

VAE. 

Quantum Encoder: The quantum encoder, a component of a quantum processing unit, utilizes quantum 

gates to encode data into quantum states. The quantum encoder's operation is based on passing the 
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inputs through a series of quantum gates that change the form of data into a superposition of the 

quantum states as shown in Fig. 5. Such encoding processes include capturing high-order moment data 

and covariance, or correlation, between different variables describes: 

Initial State: 

   (1.10) 

Apply Quantum Gates: 

       (1.11) 

Encoding Data with Parametrized Gates: 

       (1.12) 

 

 

Fig. 5 Quantum VAE Encoder Methodology and analysis 

 

Quantum Decoder: The other process, which is complementary to the quantum encoder, is the quantum 

decoder, which is responsible for reading out classical information from the superposition state 

quantized by the quantum encoder as shown in Fig. 6. Quantum measuring processes could potentially 

restructure the entangled states, transforming them into classically described states with entirely distinct 

bits. This step transforms the quantum representation into a reconstructive form, facilitating the easy 

measurement of anomalies. Mathematical describe: 

 

Entangles State before Measurement: 
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          (1.13) 

Outcome Measurement: 

 

 

 

Fig. 6 Quantum VAE with Decoder methodology 

 

Quantum VAE: We can guess that the quantum VAE can use quantum properties like superposition or 

entanglement to its advantage. These properties allow for different ways of representing and changing 

data using quantum circuits. 

Training: The training process for Quantum VAE combines both classical and quantum methods. 

Hybrid Optimization: We use parameter optimization methods, such as gradient-based classical 

optimization methods, to maximize the values of quantum circuits. This is a combination of quantum 

computing effectiveness and standard optimization procedures for the model.  

Loss Function: The Quantum VAE divides its loss function into parts that enable the model to optimize 

for reconstruction and incorporate additional quantum-specific components. Quantum reconstruction 

considers the variation between genuine and recovered information through the applied index of 

reconstruction loss, which aims at maintaining the integrity of the quantum states as does quantum 

regularization do.  

The training strategy proposed here aims to control and optimize these various loss components, 

enabling the quantum VAE to learn a representation of the data and identify anomalies as shown in Fig. 

7. 

Model Evaluation: The process of comparing Quantum VAE also involves assessing its ability to 

elucidate anomalies and comparing it with conventional VAE models. 

We analyze quantum-enhanced reconstruction errors to evaluate the model's performance in anomaly 

detection. We evaluate the model's sensitivity to identify abnormal trading patterns; as such high 

reconstruction errors suggest anomalies. 
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Fig. 7 Quantum VAE Performance with Encoder and Decoder 

 

Performance Comparison: To determine Quantum VAE's success in anomaly detection, we compare it 

with other VAE models, just like we do with the other VAE models. Typically, we measure the quantum 

model's absolute accuracy or compare its performance results against classical algorithms using metrics 

like precision, recall, and the F1 score. 

We chose the Quantum VAE approach to investigate the potential benefits of quantum computing for 

anomaly detection in high-frequency trading. The choice for the quantum VAE approach allows for 

examining the possible benefits of using quantum approaches in anomaly detection for high-frequency 

trading.  

Compared to classical computing, they also provide seamless solutions for complex datasets that have 

more than one variable. As crude as they are in their most broad-sense definitions, quantum circuits 

stand to raise the rate of computation and will come in handy when used in big data analysis and high-

dimensional patterns. 

The QVAE model utilizes quantum processes to facilitate anomaly detection. The application of 

quantum superposition and entanglement may help to improve the capability of discovering more 

complex patterns of trade activities and market anomalies, as well as augmenting the firm's market 

knowledge. 

The ability to demonstrate the practical application of specific quantum computing principles in these 

examples provides an environment for evaluating the performance of quantum technologies. We can 

then compare the quantum VAE with the classical VAE to see the actual enhancement it provides in 

terms of performance, detection capability, and power upon implementation. So, the new quantum VAE 

approach is a big step forward in the field of high-frequency trading research. It shows that quantum 

machine learning can be used to solve problems involving finding anomalies. 

 

4. Results and Discussions 

Accuracy and F1 Score: The study's results demonstrate that the proposed variation of Quantum VAE-

Quantum VAE has an accuracy of 0.93 and a weighted F1 score of 0.91 as show in Table 2. From these 
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metrics, we deduce that the proposed quantum VAE model effectively identifies normal and anomalous 

data points in a higher-frequency trading system. To evaluate the model's outlier prediction ability, we 

calculate the F1 score in order to avoid higher false positive or false negative rates. This performance 

demonstrates how safe it is to use the proposed Quantum VAE for detecting anomalies in high-

dimensional financial datasets 

Table 2 Accuracy and F1 score of model performance metrics 

Metric Results 

Accuracy 0.93 

F1 Score 0.90.91 

Precision-Recall Curve: In Fig. 8, we show the quantum VAE's precision-recall curve. The curve is a 

measure of precision and recall; precision is the true positive divided by the total true positive plus false 

positive values, and recall is the true positive divided by the actual true positive plus false negative 

values at different threshold levels. The precision-recall curve's specific metric, the area under the curve 

(AUC), has a value of 0.93, indicating that the quantum VAE outperforms other methods in terms of 

precision and recall rate for anomaly detection.  This stalwart performance is particularly important to 

the HF trading environment because it requires an instant and accurate assessment of abnormalities to 

help control risk and generate good decisions. 

 

Fig. 8 Quantum VAE precision-recall curve analysis 

Actual vs. Predicted Values: The blue points in the scatter plot in Fig. 9 represent the actual values, 

whereas the red points represent Quantum VAE's predicted values. The proximity of these two curves 

supports the model's ability to recreate data and isolate seeming anomalies. As a result, the plot also 

shows that the Quantum VAE can spend its time capturing and predicting anomalies in HF trading data 

sets. The scatter plot demonstrates that the quantum VAE achieves a high level of precision and 

accuracy in its prediction. 
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Fig. 9 Quantum VAE actual v. predicted values analysis 

 

Loss and Validation Loss: The figure below illustrates the training and validation losses against epochs 

in the context of Quantum VAE. The plot also reveals that there is a unique and clear downward trend in 

both training loss and validation loss, thus demonstrating that the model is learning as well as 

generalizing as shown in Fig. 10. The training loss tells about the train data, while the validation loss 

tells about how well the model has done on the unseen data. This graph indicates that the Quantum VAE 

effectively captures the underlying patterns in the data, avoiding the risk of overfitting. This stable and 

convergent behavior indicates that the model's training process is adequate. 

 

Fig. 10  Quantum VAE Training and Valuation loss 
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Latent Space Representation: This is the plot of the encoded data from the Quantum VAE, as 

illustrated in Fig. 11. Each point represents an instance in the latent space, with different colors 

representing normal data instances and anomalies. With the help of the visualization, one can grasp the 

idea of how the Quantum VAE organizes similar data and isolates outliers. The Quantum VAE 

successfully captures meaningful low-dimensional representations of the data by assigning normal cases 

to one cluster and correctly placing outlying instances in another. This visualization supports the fact 

that this model has learned a useful latent space for anomaly detection.  

 

Fig. 11 Latent Space representation in Quantum VAE 

Visualization of anomaly detection 

Anomaly Detection Results: Fig. 12 displays the test results of the anomaly detection process, 

highlighting anomalies in red and normal instances in blue. This animation shows how Quantum VAE is 

able to distinguish outliers in data sets using reconstruction errors. We can conclude that the quantum 

VAE has sufficient capability to induce deviations from normal behaviors, based on its clear separation 

between anomalous and normal cases. It aids in determining the model's effectiveness in identifying 

these as anomalies and also provides a practical perspective of the model in a real-world setting. 
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Fig. 12 Anomaly Representation of Quantum VAE 

 

PCA analysis  

Principal Component Analysis (PCA): Fig. 13 presents the PCA plot of the dataset, reducing the 

dimensionality to depict the dataset's distribution in a nearly reduced dimensional space. The PCA plot 

suggests more about the manner in which the Quantum VAE deals with the data at the reduced 

dimensions, as seen from the pileup of normal and anomalous points. From the plot, it is clear that 

Quantum VAE de-correlates the anomalies from the normal data in the reduced feature space. This 

analysis provides some useful extensions and gives further insight into precisely how well the model can 

scale up and meet the demands of such large data sets. 

 

 

Fig. 13 Principle Component Analysis of the given dataset 

Comparison with classical VAE  
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Classical VAE Metrics: This paper's earlier development of the Classical VAE yielded an F1 score of 0.78 and 

an accuracy of 0.80%. The classical VAE performed worse in terms of accuracy and F1-score than the quantum 

VAE, indicating that the quantum VAE performed better in anomalous data discrimination as show in Table 3. 

The work highlights the deficiencies in the classical VAE, demonstrating how the quantum VAE outperforms it in 

terms of accuracy and effective anomaly detection. This comparison shows that it may be useful to integrate QC 

coverage into the subject of anomaly detection. 

 

Table 3 Performance Matric Comparison of Classical and Quantum VAE 

Model Accuracy  F1 

Score 

Classical 

VAE 

0.80 0.78 

Quantum 

VAE 

0.93 0.91 

 

Discussion 

The results from Experiment  show that the proposed quantum VAE did better than the classical VAE in terms of 

F1 and AUC (precision-recall). The training history shows satisfactory training and a good ability to generalize 

when the loss values are quite stable, indicating successful convergence. In result of the learned latent space and 

the anomaly detection result prove that the proposed Quantum VAE is capable of detecting and separating 

anomalous data well. The PCA analysis backs up the model to show that it did well in managing data with high 

dimensions.  

Advantages over Classical VAE 

The quantum circuits used in the Quantum VAE have low complexity for high-dimensional data and potentially 

higher detection rates. The improved computational performance and higher quality clustering in the latent space 

also speak to the benefits of quantum computing. Quantum VAE's analytic capability in terms of singling out 

anomalies in the reduced feature space from the PCA proves the model's suitability for the high-frequency trading 

application, where timely and accurate detection of anomalies is paramount. 

Limitations and Challenges 

However, there are various issues affecting the working of the quantum VAE, such as the instability of the 

training process and the restricted accessibility to quantum processors. Since the training process fluctuates, we 

can conclude that further fine-tuning is necessary. Furthermore, the current limitations of quantum computing 

constrain the actors of quantum VAE, posing a potential challenge in real-world scenarios. 

5. Conclusion 

The Variational Autoencoder proposed here can significantly enhance anomaly detection in high-

frequency trading datasets. In terms of a number of important performance parameters, it does better 

than the standard classical VAE. The authors later applied the proposed quantum VAE and realized that 

the latter had a higher accuracy and F1 score. It also had the higher precision-recall AUC, indicating that 

it is a better way of finding an anomaly with higher precision and recall capability. The proposed 

model’s performance in identifying the difference between regular and outlier values in the latent space 
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as well as in PCA further fortifies these observations. This means that employing quantum computing 

can be very useful in establishing that there are anomalies. 

 Limitation of this model is to ensure the model's adoption at higher levels of realization; we must 

address a few challenges, such as instability in the training process and current limitations in quantum 

computing processing. We discovered significant variations during the training process. During the 

training process, we observed significant variations from one training session to the next, which could 

potentially take one or two weeks, depending on the complexity of the problem at hand. Furthermore, 

the use of quantum resources necessitates additional fine-tuning of the quantum algorithm to achieve 

consistent and reliable results. Research and develop quantum machine learning to enhance the utility of 

quantum-based models. 

At the end, it is possible to state that the suggested quantum VAE is a leap forward in the field of 

anomaly detection and provides new opportunities for investigations instead of classical methods. High-

frequency trading's increased computing efficiency reveals new challenges in data analysis and outlier 

detection that quantum computing can solve. For future work, therefore, it may be necessary to 

reconsider and optimize the quantum replacements and the universal quantum computing to remove 

present barriers and unleash the full potential of using quantum-based models. However, as quantum 

technology advances, the use of quantum models such as the defined VAE in numerous and complex 

data analysis applications become a perfect tool to describe future advancements in fine tuning and 

cybersecurity, among other areas. 
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