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1. Introduction and Preliminaries

By examining its applications, one can catch a glimpse of fixed-point theory's breadth in several
areas. According to several fixed-point theorems, the functions must have at least one fixed point.
We can observe that these findings are often advantageous in the field of mathematics and are
essential for determining the existence and singularity of solutions to various mathematical
models. The Banach and Caccioppoli fixed-point theorem, which was started by Banach [7] in
1922 and proved by Caccioppoli [9] in 1931, was formed after some scientists established various
conditions to discover fixed points. A fixed point must exist for the function if it seizes, according
to the Banach and Caccioppoli fixed-point theorem. After this incredible outcome Branciari [6]
proved the fixed-point theorem of the Banach-Caccioppoli theorem for a class of generalized
metric spaces. Theta-contraction mappings were given a new definition by Jleli and Samet [14] in
2014, and they established a number of fixed-point theorems for them in complete metric spaces
(CMS). Fixed-point theorems for a-y -contractive maps were proven by Samet et al. [19]. Fixed-
point results for generalized @-contractions were demonstrated by Ahmad et al. [2]. By combining
generalised contraction with triangular a-orbital acceptable mappings in the sense of Branciari
metric spaces, Arshad et al. [5] demonstrated certain fixed point results.

On the other hand, Gordji et al. [13] introduced the concept of an orthogonal set (OS) and
generalized the Banach Fixed Point (FP) theorem. Further, fixed point results on orthogonal
(generalized) metric spaces have been provided by, Javed et al. [16], and Uddin et al. [22, 23]
initiated the notion of an orthogonal structure and established the Banach contraction principle.
Aydi et al. [24, 25] established modified F-contractions via a-admissible mappings and
generalized admissible-Meir-Keeler-contractions in the context of generalized metric spaces. For
more information see [26-34].

A prominent field of research is the study of geometry of the collection of non-unique fixed points
on a map. Suppose that, examine a self-map M on a metric space (M.S) (=, d) with usual M.S the
two-dimensional plan R? as:

(w,d), (@d)ew?+d>=1,

M(@,0) = { (1,0) otherwise

Notice that, the set of non-unique fixed points {(cos nf,sin n@):n € Z,6 € [0, 2m)} includes the
circle §((0,0), 1) centered at (0,0) having radius 1; that is, ((0,0), 1) is a fixed circle of M. For
example,

w

M(w,b) = (zzrz, b2’ w2, 2

),w, DENR

Then, M&(0,1) = &(0,1), but map M fixes only two points (1,0) and (—1,0) of the
circle ©(0,1). The purpose of this work is to show the notions of an orthogonal ©-contraction, an
orthogonal ®,-weak contraction, a ¥,-weak JS-contraction and a generalized integral-type 0,-
weak contraction.
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Definition 1.1 [13] Let £ # @ be a set and L be a binary relation on = x Z. If 3 ; € Z such that
the following condition holds:

(forall§ € 2By L &)or (forall6 € E8 L By),
then the element S is said to be an O-element and = is an OS.
Definition 1.2 [13] Let (&, 1) be an OS and (&, d) be a metric space. Then (%, L, d) be an OMS.

Definition 1.3 [13] Let (=, L) be an OS. A sequence {£,} is said to be an orthogonal sequence (O-
Sequence) if

(VneEN,B, L Bry)or(VneEN, By L Br).

Likewise, a Cauchy sequence {f,} is called a Cauchy O-sequence if

(VneEN, B, L Bpy)or(VneEN, g L By).

Definition 1.4 [13] Suppose (£, 1) be an OS. A mapping M,:=Z — Z is called an orthogonal
preserving (O-Preserving) if M, 8 L M, 6 whence 8 L 6.

Definition 1.5 [13] Let (=, L,d) be an OMS. Then M ,: & — Z is called an orthogonal continuous
(O-continuous) at g € = if, for each O-sequence {£,} in £ with {8,} = B, we have M, B, =
M, B. Also, M| is said to be O-continuous on £ if, M, is O-continuous at each g € =.

Definition 1.6 [13] Let (&, 1,d) be an OMS. Then £ is said to be an OCMS if every Cauchy O-
sequence is convergent in .

Definition 1.7: [35] A metric is a non-empty set £ a function d: £ x £ —» R* fulfilling

() d(w,d) =0iffw =D

(i) d(w,b) = d(d, @)

(iii) d(w,d) < d(w, M) +d(M,d), @, b, M e &

Definition 1.8: [36] An ellipse and foci at ¢;, and ¢, ina MS (Z,d) is given as:
glcy,cp,0) ={w € E:d(cy,w) +d(cy,w) =a,¢q,¢5, € E,a € [0,0)}

The midpoint & of a line ¢, ¢, is known as center of an ellipse. The distance:

f=@1/2)d(ey,c2)
is the linear eccentricity ; that is,

e =d(cq,c3)/a.
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Example 1.1: Suppose £ = R and metric IT: £ x £ —» R* described d(w,d) = |o — d|,@,d €
Z; then, g(5,10,8) = {w € M:d(5,w) + d(10,w) = 8}

{weZ:|5—-—w|+ |10 —w| =8} ={3.5,11.5}
Definition 1.9: [15] Let Q indicate the functions ©: (0, ) — (1, o) such that
(©,): © is non-decreasing;

(©3): 3a € (0,1)and B € (0,0] st lim, (O(w) — 1)/@ = .

Definition 1.10: [36] Let g(c4, ¢,, @) be an ellipse the foci at ¢; and ¢, ina MS (&, d). So,
g(cq,c5,a) is called fixed ellipse of M: E - Z if Mo = @, @ € g(cq,¢2,0), a € [0,0).

2. Main Results

We are working with maps that satisfy innovative orthogonal contractions that, under certain
circumstances, fix one element in space and produce a set of non-unique fixed points, some of
which be geometric objects like ellipses or elliptic discs:

d(Mw@, Mbd) > 0 = 0(d(Mw, Md) < [0(L(w,1))]"

Where £(w, d) = max{d(w,d), yd(w, M@) + (1 —y)d(d,MD),(1 —y)d(w, M) +
yd(d, M),

y €10,1),a € (0,1),Vw,d € Z with @w L b

Theorem 2.1. Let (£, L d) be an OCMS and O- map M': £ — = be a L-continuous O-preserving
orthogonal © contraction. Then, M has a unique fixed point.

Proof: Define a Picard sequence {w,,} € Z,and w,, L M@, or M@, | @, @y = M@,

n € N,, that initial pointw, EEVdE€EZwy L bordb€EEZ L wyIf n€N, M""w = M1 g,
and M"w L (" wor M™"*1w L M"w since M is O-preserving and M "w is a fixed
point of M.

O(dM"w, M"' w)) < (WM™ 1w, M"w)),
Where
M o, M"w) = max {d(M" o, M"w),yd(M" 1o, M "w)

+(1 - P)d(M "D, M™ @), (1 — P)d(M" 1w, M w)
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+yd(M"w, M @), yd(M™" 1w, M 1w)
+(1 - dM e, "), (1 — y)d(M" 1o, M w)
+yd(M"w, M" @)}
= max {d(M" 1o, M"w),yd(M" 1w, M "w)
+(1 —-p)dM e, M 1 @), (1 — y)d(M" 1w, M "w)
+yd(M "o, M @), yd(M" 1o, M 1w),
(1 -pPdM" o, M @)}
Case 1. If d(IM" 1, M"w) < d(M"w, M™*! w), then
LM o, M"w) = d(M"w, M @)
That is, O(d(M"w, M @) < [0(d(M"w, M1 w))]",
a € (0,1), a contradiction.
Case 2. If d(IM"™ 1, M"w) = d(M"w, M1 @), then
LM o, M"w) = d(M"w, M @)
That is, O(d(M"w, M1 @)) < [0(d(M @, M1 @))]".
Following a similar pattern,
c(dM"w, M w)) < [0(d(M™ ', M”zzr))]a
< [@(d(w,Mzzr))]a - l,asn—
Using (@2),1112130 d(w, Mw) = 0. And (03), there exist 8 € (0, ) such that

. (dMw, M w)) -1 P
im =
n—oo (d(an‘Mn+1 m))a

If B € (0,) then fore; = B/4 > 0, there exists N; > 0 such that

O(dM"w, M w)) -1
(d(M”w, M+l w))a

implies
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O(dM"w, M w)) -1
(d(]\/[”zzr, Mn+l w))a

>p—&

3
= Z'B > Sl,n = Nl'
That s,
(dM @, M1 @) < (1/&)( 0(d(M™ @, M™ ' @)) — 1),n = N,.

If B = oo, then for any &, > 0, there exists N, > 0 such that

O(dM"w, M w)) -1
(d(JV[”w, Mn+l w))a

>¢g,n =N,

That is,

(d(M @, M w))" < (1/&,)( 0(d(M™ @, M™ 1 @) — 1),n > N,

Thus, for all 8 € (0, 0] and u = max{1/¢&;,1/¢&,}, there exists N = max {N;, N,} such that
(dM @, M1 )" < u( O(d(M™@w, M™1@)) - 1),n > N.
< ,u[@(d(u,]\/[w))] —1->0,asn—- o

That is, lim (d(]\/[’“‘zzf,]\/["+1 w))a =0 In>Nsit
n—oo

d(M"w, M1 w) <

_nl/a,n>N

Ifn>m,dM™w, M"w) < d(M™"o, M o) + d(M™ o, M™2w) + - +
d(M" 1w, M"w)

< 1 1 1 < 1
—ml/a+(m+1)1/a+'“+m—zim

i=n
Since a € (0,1), series Z;";ni% is convergentand lim d(M™w, M "w) is finite i.e {M"w}

n,m—oo
is a Cauchy orthogonal sequence (COS). So, Z is complete, {M"w} convergesto w" € Z.
since M is continuous,

M'w} > o' > {(M"lw} > Mo
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And limit M@* = @”, i.e, @™ is a fixed point of M. Let Dt* be other fixed point of = and W™ L
wrorw* LM, SodMw*, MM*) = d(w*, NM*) > 0. Now,

e(d(Ma*, MM)) < [0(L(@*, MM))]"
Where
L(w*, M") = max{d(@*, M"),yd(w", ME*) + (1 — y)d(I", ZM") }.
(1 =p)d(@*, M@™) + yd(M", M), yd(w*, MM")
+(1 = pY)d@, M=), (1 —y)d(@", M) + yd (M, M@ ™)},
= max{d(E", M), yd(@", @") + (1 — y)d (", M")}
(1 -y)d(@",@") +yd(@, M), yd(w", M")
+(1 = y)d@, @"), (1 —y)d(@”, M) + yd(W, @)},
= max{d(@", M), yd(@", M) + (1 - y)d(W', @")
(1 =p)d(@", M) + yd(W, @)} = d(w", M").
That is,
0(d( Mw*, MM)) < |o(dw, M))|* < 6((w, m).
That is,
0(d(u*, M")) < 6(d(u*, M),
a contradiction. Hence, proved.

Theorem 2.2: Let (£, 1,d) be an OCMS M:Z - £ be a self-Mapping O-preserving O-
continuous Ciric-type orthogonal ©-concentration then, M has a unique fixed point and the
sequence of iterates {M "w} converges to a fixed point of M'in =.

Proof: The proof obeys the method of theorem 7 on y = 0.

Example 2.1: Let £ = {w, =2n—1:n € N}and d(w,d) = | —d| V@, b € Ewithw L
b < w=>b bean OCMS. Let O(t) = e'®" € 0,y = 0. Describe a self-map M: 5 - = :

(D’l, w = wl,

M(D’z{w_n_l’wzwnnzz

Then,
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2(uy, u;) = max{d(@,, @), d(w,, M@,), d(w, Mw,),d(w, Ma,)}
= max{d(2n — 1,1),d(2n — 1,2n — 3),0,d(1,2n — 3),d(2n — 1,1)}

=max{|2n — 2|,|2|,|2n— 4|} =2n -2 = 2.
Now,

d(M @y, M@, )

oo L(Up, Ug)

. |2n—=-3-1]
= lim ——=

1n>2.
A n

so, satisfies Ciric-type @ concentration; i.e

d(M@p, Mwp) # 0 = e\/d(Mwn'Mwm)ed(MWn.Mwm)
nr m

< ea\/d(w”’wm)ed(wn'wm), a €(0,1)

= d(M®,, M®@,,)eMTnM@mn)
< a?[d(wp, @) et @], a € (0,1)

d(Mw,, Mw,,)eM@nMw@nm)

d(wy, @y )e d(@n,@m)

<a? a€(0,1).

Case1.Whenn=1andm > 2,

d(Mw,, Mw.m)ed(Mwn,Mwm) B |(2m _ 4)8(2m_4)| _
d(w,, ,,) e @nom) T (2m—2)e@m-2 = €

Case 2. Whenn >m > 1,
d(Mwn,Mwm)ed(Mw”’Mwm) B |2n — 2m — 6|e|2n—2m—6|

d(wy, @) ed@n@m) T 12n — 2m — 2|el2n-2m-2]

n—-2m-—=6 (2n-2m-6)
(Zn—2m —6)e < ot

(2n — 2m — 2)e(@n—2m=2) =

Where, M is Ciric-type © concentration with @ = max{e™*,e~2} = e~ and unique fixed point
1.and more as lim M"w; =1..

n—>oco
Definition 2.1 An elliptic disc have foci at ¢; and ¢, ina OCMS (&, 1, d) is describe as
go(cy,c0,0) ={w € E:d(cy,w) + d(cy, @) < a,¢q,65 E M, a € [0,0)},
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Definition 2.2: Let g5 (cq, ¢4, a) be an elliptic disc having foci at ¢; and ¢, ina MS (=, d).
go(cq, ¢y, ) is called fixed elliptic disc of map M: £ - Z' if

Mw =@, w € gp(cy,¢y,0),a € [0, )

Definition 2.3: Let @ : (0, ) — (1, ) be an increasing function. A map M: £ — = of an OMS
(£, 1,4d) is called orthogonal ®,-week contraction with @ # b, if

d(w, M®) > 0 = 0(d(@, M) < [0(2(u,b))]"

Where £(u,d) = max {d(u,d), yd(@, M®w) + (1 —y)d(d, M), (1 —y)d(w, Mw)
+yd(d, M), yd(w, Md) + (1 — y)d(db, Mw), (1 — y)d(w, MDd) + yd(d, Mw),

y €[0,1),a € (0,1),w,d € Ewithw L d

Theorem 2.3: Let g(c4, ¢5, @) be ellipse in an OMS (&, 1,d) and

J— 1 ] .
a= (E) {infd(w, Mw): @ + Mw}

A M:E — £ is a self-mapping O-preserving O-continuous orthogonal ©4-week contraction with
c1,¢2 EEandcy L ¢, and d(cy, Mw) + d(cy, Mw) = a,@ € g(cq, ¢y, a) then g(cq, ¢z, a) IS
a fixed ellipse of M.

Proof: Let @w € g(c4, ¢y, a) be any random point and M@ # @ with Mw L worw L Mw
a,d(w, Mw) = 2a, let M¢c; # c;with M¢; L ¢;ore; L Mcy and Mc, # ¢,, and Mc, L
¢, orc, L Mc,50 M is O-preserving we have d(c;, Mc;) >0, d(c,, Mc,) >0, and

G(d(cl, Mcy)) < [@(2(01, cz))]a

= [@(max { d(¢cy,¢1),vd(c1, Mcy) + (1 —y)d(cy, Mcy), (1 —y)d(cy, Mcy)
+ yd(cq, Mcy)yd(cy, Mcy) + (1 —y)d(cy, Mcy), (1 —y)d(cy, Mecy)
+yd(cq, Mcy)P]*

= [0(max{0, d(c;, Mc)D]* = [0(d(cy, Mc)]” < 0(d(ey, Mey))
a € (0,1),a contradicticcz?z.i_fsi(;V[g)[c>1 (T(Stds(lz;rmﬁlwy))]v[;f@:(g zIil’gcalir)1)]s,jtnce
= [0(max { d(w, ¢;), yd(w, Mw) + (1 —y)d(cy,Mcy),(1 —y)d(w, Mw)
+ yd(cllMcl)yd(wl Mcl) + (1 - Y)d(CI'Mw)l (1 - )/)d(w, Mcl)
+yd(cy, Mw)})]*

< [@(max { 2q,yd(w, Mw), (1 — y)d(w, M®),yd(w, ¢1)
+ (1 —y)d(ey, M®),(1 —y)d(@,¢1) +yd(c, Mw@)})]*
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2q,yd(w, Mw), (1 — y)d(w, M),
< O max yd(w,c,) + (1 —y)d(cy, Mw), ,a € (0,1)

(1 - Y)d(w, Cl) + )/d(Cpr)
Case 1: If
max{ 2q,yd(w, Mw), (1 — y)d(w, Mw), (1 — y)d(w, M), } — 2
yd(w, Cl) + (1 - ]/)d(Cl,MzD'), (1 - )/) d(ZD', Cl) + )/d(CLM?U)

Then 8(d(w, M) < O(2a.) By definition of a and 8, 8(2a) < 0(d(w, M®)) < 8(24a), a
contradiction.

Case 2. If

max{ 20, yd(@w, Mw), (1 — y)d(w, Mw), (1 — y)d(w, Mw),

yd(w,c) + (1 —y)d(cy, Mw),(1 —y)d(w,c;) + ]/d(cl,]\/[w)} = yd(w, M®),

Then

yd(w, Mw) (yd(w, Mw).
Ify = 0,0(d(w, M@)) < ©(0), a contradiction. If y € (0,1),0(d(w, M®)) <
0(yd(w, Mw)) < 0(d(w, Mw)), a contradiction .

Case 3. If
ase ( 2a, yd(w, Mw), (1 — y)d(wm, Mm),\

(1 - y)d(w, Mw), _
maxi yd(w, 01) + (- Y)d(Cl,MZD'), f =(1- V)d(w, Mw),

(1-y)d(@m,c;) +yd(c, Mw)
Then 8(d(w, M®@)) < 0((1 — y)d(w, M®)) < 6(d(w, M®)), a contradiction.

Case 4. If 20, yd(w, M), (1 —y)d(w, Mw)
, (1 —y)d(w, Mw), ~ ~
MY d(@, ) + (1 —)d(e, Mo), [ yd(@,cy) + (1 —y)d(cy, M),
(1-pd(@,c;) +yd(c;, M)
Then

@(d(w,Mw)) < @(yd(w, c)+(1- )/)d(cl,]V[w))
<0(ya+ (1—y)a) =06(a)

By definition of a and 0, 8(2a) < 0(d(w, Mw) < O(a), a contradiction.

Case 5. If 2a,yd(w, Mw), (1 — y)d(w, Mw),
(1-y)d(w, M)

,vd(@, ¢1) + (1 —y)d(cy, M®),

(1-y)d(@,c;) +yd(c, M)

max =1 —-y)d@,cq) +yd(c;, Mw),

Then G)(d(w, Mw)) < @((1 —y)d(w,cy) + yd(cl,MzU))
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<O(ya+ (1—7y)a) =0(a).

By definition of a and 0, ©(2a) < 0(d(w, Mw) < O(a), Hence, Mw = w, @ € g(cq, ¢y, q);
that is g(cq, ¢, ) is a fixed ellipse of Z.
Theorem 2.4: If in the above theorem d(¢;, M@) + d(c,, M@) < a, then gp(cq,cz,a) isa
fixed elliptic disc of M.
Proof: We have to prove gg(cq, c5, @) is a fixed elliptic disc of M, and that M fixes an ellipse
g(cq,¢2,0) with b<a. Since M is orthogonal ®, weak concentration then d(c;, M@) +
d(c,, Mw) = b <a; that is Mw =@, Vo € gy(cq, ¢y, b). Hence go(cq,cpa) is a fixed
elliptic disc of M.
Theorem 2.5: Theorem 15 remains true if we use Ciric type orthogonal ©,- weak concentration.
Proof: The proof follows the pattern of Theorem 15 on taking y = 0.
Example 2.2: Let £ = [5,0] and d(w,d) = |o —d|Vw,dD € £ withw L b & w =Dd isan
OCMS.
Let O(t) = eYc; = —2,¢c, =3,a=6,y =0,and a = 6/7. An ellipse

g(=23,6) ={w e Z:d(-2,w) +d(3,w) = 6}

{wer:|-2—-—w|+|3—@=6}={-25,3.5}
Describe a self-map M: = — £ as

w, w € [-5,5],

Mo = {w + 12, otherwise
Since for w € [—5,5], d(w, Mw) = 0 and for @ € (5, ), d(w, Mw) = 12 > 0.
Case 1.Forw > 5and ¢; = -2,
Lu,-2) = max{d(w -2), d( 2,M(-2)),d(w, M®),d(—2, M®m),d(w, M (—2))}
= max{d(w, —2),d(—2,-2),d(w, Mw),d(—2, Mw), d(w, —2)}
= max{d(w,—2),0,12,d(—2,w + 12)} = max{|@w + 2|, 12, |@ + 14|}
= |w + 14| > 19,
and
0(d(@, M®)) = 0(12) = e!? < 12/ 1N@+8] = o(2@-2)
Case 2. Forw > 5 and ¢,
L(w,3) = max{d(w 3),d(3, M3),d(w, Mw),d(3, Mw), d(w, M3)}
= max{d(w, 3),d(3,3),d(w, Mw), d (3, Mw), d(w, 3)}
= max{d(w, 3),0,12,d(3,w + 12)}
=max{|ow — 3|, |+ 9|} = |w + 9| > 14,

0(d(w, Mw)) = 0(12) = e1? < ¢(12/13)[@+9)]
= o(t@3 ))(12/14) = [0(&(w, 3))] (12/14)
withe; = —2,¢, =3 and a = maX{12/19 12/14} = 12/14. Hence g(—2,3,6) = {—2.5,3.5}

is a fixed ellipse and g4 (— 2(%62) T d 331255 IS a6f|z>z(red egl}l;)%tlc dISC)Of M,

" = fe(e(w, — 2.

and

Example 2.3: Suppose £ = R? and a metric d: £ X £ - R* be describe as d(w, d) =
J(@; —b,)% + (@, — b,)? , where @ = (@, @,) and d = (d4,b,).d(w,d) V@, b €
ZwithoLd ©w=>Dd

Let@() =1+t c; =(3+2V3—1),c;=(3-2V3—1),a=8y=0anda =6/7,
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The ellipse
g(clrcli 8) = {ZD' € E: d(cliw-) + d(CZrZD-) = 8}

{wEE:\/(wl—3—2\/§)2+(w2+1)2 +\/(w1—3+2\/§)2+(w2+1)2 :8}

- (@ —3)* (w,+1)°

Further, the elliptic disc @, — 3)2 o + 1)2
gD(cl,cz,8)={wEE:( 116 ) +<( 24 ) )Sl}

Describe a self-map M: £ - & as{w' @ € (3 + 6 cosd, —1 + 6sind),
Mo =
w + (8\/5, 8\/?), otherwise

Since for @ € (3 + 6 cosf, —1 + 6518?37d]%3@96=>00and for w € R*\(3 + 6 cosd, —1 +
6sind), ' '

Case Quj:(cg ng/@?)v(@) 6 cos, —1 + 6sinf) and ¢; = (3 + 2v3,-1),
d(@, (3 +2v3,-1),d((3 +2V3,-1), M(3 + 2v3,-1)),
~ "N d(w, M), d (3+2v3,-1), M), d (@, M(3 + 2v3,-1))

) d(@, (+2v3,-1),d ((3 + 2v3,-1), (3 + 2V3,-1)),
- d(w, M), d ((3 +2V3, —1),]\/[127) d(w, (3 +2v3, —1))

= max{d(w, (3 +2v3,-1),0,16,d (3 + 2V3,-1),m + (8vV2,8v2 ) )}

\/(w1 -3 - 2\/§)2 + (w, + 1)2 ,16,

= max > 16

J(w1+8ﬁ—3—2ﬁ)2+(w2+8x/§+1)2

(16/17)

0(d(@, M) = 0(16) = e < o (16/17)8(w(3+2V3-1)) _ [@ (53 (w, (3+2v3, —1)))]

Case 2. For @ € R?\(3 + 6 cosf, —1 + 6sind) and ¢; = (3 — 2v3,-1)
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2(,(3-2v3,-1))
d@, (3 -2v3,-1),d((3 - 2V3,-1),M(3 - 23,-1)),

= max
d(@, Mw),d ((3-2V3,-1), Mo ),d (@, M(3 - 2v3,-1))

d(@, (3 - 2v3,-1),d((3 - 2v3,-1),(3 - 2V3,-1)),
d(@,Mw),d((3-2V3,-1), M3 ),d (=, (3 - 2V3,-1))

= max

= max{d(@, (3 - 2v3,-1),0,16,d (3 — 2V3,-1), @ + (8v2,8v2 ) )}

( \/(wl -3+ 2x/§)2 + (@, + 1)2 ,16, )
= max > 21
i\/(w1+8\/§—3+2\/§)2 + (@, +8\/§+1)2f

And

0(d(w, Mw)) = 8(16) = e'® < e(16/21)53(w,(3—2\/§,—1)) _ [9 (2 (w, (3-23, _1))>](16/21)

ie, ¢, =(3+2V3-1),c,=(3-2V3—-1),a =max{16/17,16/21} = 16/17. Hence
g(cq, ¢, 8) is afixed ellipse and g¢(cq, ¢, 8) is a fixed elliptic disc of M. That is d(¢,, @) +
d(cy;, @) < 8,@w € gypl(cy, ¢y, 8).

Definition 2.4: Let W: [0, ) — [1, o) be an increasing function with ¥(0) = 1;and M: £ - Z
be a self-mapping of an OMS (&, L, d) is called an orthogonal ¥ -weak JS-contraction with @

b, if d(u, Mw@) >0 = ¥(d(u, Mo))

< [#(d(w, )] [#(dw, Mm))]" [60(d (b, M) [¥(d (w, MD))] [# (d(d, Ma))]

Where a, b, c.e and f are non-negativeanda+b +c+e+ f € [0,1), w,b € ZE withw L b

Theorem 2.6: Let g(ci,cp,a) be ellipse in a metric space (£,d) and a=
(1/2){inf d(u, M@w): @ # Mw}. The map M:Z - Z is an O-preserving O-continuous and
orthogonal W, -weak JS-contraction with c;,¢c, € & and d(¢c;, M@) + d(c;, Mw) = a,@ €
g(cq,¢5,0),then g(cq, ¢y, a) is a fixed ellipse of =.
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Proof: Let w € g(cq, ¢4, a) be any random point and M@ # w. with M@ L worw L
Mw defined by a, d(w, Mw) = 2a. Since M is an orthogonal ¥,-weak JS-contraction ¢;,c, €

Z, suppose M¢c; # ¢, and M¢c, # ¢, S0, we have d(c;, Mc;) > 0,d(¢c,, Mc,) > 0and

‘P(d(cl,]\/[cl))
< [¥(d(es, )] [# (der, MeD)] [# (der, Me)] [# (d ey, M) [# (d ey, M)

b+c+e+f

= [Y(0)]2[¥(d(cq, Mcy))]
= [‘P(d(cl,]\/[cl))]l_a <W¥(d(cy, Mcy))
a contradiction. S0 M'¢c; = ¢;. Similarly, M'¢, = ¢,. Again, since d(w, Mw) > 0, SO
Y (d(u, M®))
< [¥(d(@,c)]" [#(d(@ M) [#(d(er, Me)| [# (d(@, Me)] [#(d(cr, M)
< [¥(@1°[¥ )1 [¥(d(cr, )] TP @I[¥ ()]
<[00 [¥ )P[0 [¥(2a)][¥ (2a)] .

[W(2a)]%P+e+S < [W(2a)]1 ¢ < W(2a)

Since d(w, Mw) = 2a and V¥ is increasing, ¥(2a) < Y(d(w, Mw) < ¥(2a), a contraction.
Hence Mw = @, w € g(cy, ¢y, a); thatis, g(cq, ¢y, a) is a fixed ellipse of M.

Proof: The proof obeys the method of Theorem 16. The subsequent instance elucidates Theorem
20 and 21.

Example 2.4: Let £ =
{-2,0,(1/2)In(6/e),(1/2) In(15/e),(1/2),In(18/e),(1/2)In(21/e), (1/2) In(24/e), (1/2),In(27 /¢
(1/2),In(30/e),(1/2),In(6e), (1/2),In(9e), (1/2),In(12e), (1/2),In(15¢),1n2,In3,In5}

and d(w,d) = |w—d|Vw,d€ Z withw L d & w =>bd bea OCMS. Let
Y(t)=et,cy=In3,c, =In5

a=1,y=0and a = 3/4. Now,
g(n3,In5,1) = {w € £:d(In3,w) + d(In5,w) = 1}

={w € &£:|In3 —w| + |In5 —w| = 1}

- {tn () 2naso)
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0, w=—-2
Mw = { -2, w=0
w , otherwise

then

2, w€{-2,0}
0, ,otherwise

d(w, Mw) = {
Then d(w, Mw) = 2 > 0.
Case 1. Form = {—2,0}and ¢; =1In3
[#(d(w,1n3))]"[#(d(@, Ma))|’ [#(d(In3, MIn3))]
x [#(d (@, MIn3))|° [#(d(In3, M=))]”

= [#(d(@ — n3))]"[#(d(@ — Ma))] [#(d(In3 — MIn3))]
x [#(d(@ — MIn3))] [#(d(In3 — M=))]
= [¥(lo — In3D]*[¥(2)]°[¥(|(In3 — MIn3) D] [¥(|w — MIn3])]° x [¥(|In3 — Mw]|)]/
= [¥(lw — In3D]**¢[¥(2)]°[¥(IIn3 - M=)}/,
= [¥(lw — 3])]***[¥(2)]°[¥(lIn3 - M)/,

_ {[‘P(lnS)]“*e[‘P(Z)]b[‘P(I(ln3 +2)DV,ifw =0
w2 4+ m3D]*e[w(2)]P [P (n3)], if w = —2

B {[‘P(lnS)]a*e[W(Z)]b[‘P(ln Be2)),ifo =0
~[¥(In (3e?)]e[w(2)]P[W(In3) )/, if o = —2

a+e ,2b 2\f i =

(3e?)ate @263/ | ifw = -2
Fora=e=1/4,b=1/4,c=0,and f = 1/3, satisfyinga+b +c+e+ f < 1; thatis,
¥(d(w, Mw))
< [®(d(er, e)]*[®(dler, M) [ (d(es, Me)] [®(d(es, M) [®(dles, Me)]
Case 2. Forw € {—2,0} and ¢, = In5,

[¥(d(w,1n5))]"[¥(d(@, Ma))] [¥(d(In5, M1n5))]*
x [#(d(@, MIn5))|° [¥(d(n5, Ma))]”
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= [¥(d(@ — n5))]"[¥(d(@ — M®))] [¥((In5 — MIn5))]*
x [#(d(@ — MIn5))|°[¥((n5 — Mw))]”

= [Y(l@ — In5D]*[¥(2)]°[¥(I(In5 — MIn5) D] x [¥(lw — MIn5D]*[¥(|In5 — Mz |)]
= [Y(l@ — In5D]***[¥(2)]°[¥(IIn5 — M@/,

= [¥(l@ — In5D]***[¥(2)]°[¥(IIn5 — M@/,

__{PPUnSHa+ﬂHK2HbPPQGn54—2Nﬂfjfwf=O
~[W(2 4 In5D]*+e[W ()P [¥(n5)], if w = —2
3 {[‘P(lnS)]“*e[W(Z)]b[‘}’(ln 5e2)V,ifw =0
~[®(n (5e?)]¢ e[ (2)]P[W(In5) )/, ifw = —2

a+e ,2b 2\f i =

(5e?)a*e e2b5 | ifw = -2

Fora=e=1/4,b=1/4,c=0,and f = 1/3, satisfyinga+b +c+e+ f < 1; thatis,
‘P(d(w,]\/[w))

< [®(d(es, )] [¥(dCer, Me))] [¥(der, M) [#(d (e, M) ¥ (dler, Mep)]

That is, M is an orthogonal W-weak JS-contraction with ¢; =In3, ¢, =In5,anda =e =
1/4, b =1/4,¢c=0,and f = 1/3. Hence, g(In3,In5,1) = {(1/2) In(15/e), (1/2)In (15¢)}
is a fixed ellipse and

go(In3,1n5,1) = £{-2,0} be fixed elliptic disc of M. Then d(In3,@) + d(In5,w) < 1,w €
g»(n3,1In5,1).

Definition 2.5: Let ©: (0,0) — (0, o) be an increasing function. A self-mapping M: £ - £ O-
preserving O-continuous of a OMS (Z, 1, d) is said to be a general integral-type orthogonal ©,-
weak contraction with @ # b, if

[0(2(um)]®
d(w,Mw) >0 = J
0

@(t)dt < f @(t)dt,

0

Od(uMw)

2(u,d) = max{d(w,d),yd(w, Mw) + (1 — y)d(db, Md), (1 — y)d(w, Mw)
+ yd (b, Md), yd(w, Md) + (1 — y)d(d, Mw), (1 — y)d(w, Md)
+ yd(d, Mw)},y € [0,1),a € (0,1),w,d € £ with @ L b.

Theorem 2.7: Let g(cq,c5,a) be an ellipse in an OMS (£,Ld) and a=
(1/2){infd(w, Mw): @ # Mw} . If a self-mapping M: £ — Ebe a O-preserving O-continuous
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and general integral-type orthogonal ®, -weak contraction c¢4,¢c, € £ and d(c;, M) +
d(c,, Mw) = a,@w € g(cy, ¢y, a), then g(eq, c,, a) is a fixed ellipse of M,

Proof: The proof obeys the method of Theorem 2.3

Theorem 2.8: If in Theorem 2.7 d(¢;, M@) + d(c,, Mw) < q, then is a fixed ellipse of M.
Proof: The proof follows the pattern of Theorem 2.4

Definition 2.6: Let W: [0, ) — [1, o) be an increasing function with ¥(0) = 1; then map
M:E — E ofan OMS (&, d) is called an integral-type orthogonal ¥,-weak JS contraction with

w # D, if d(w, Mw) > 0 implies that

Y(d(wMm))
j @(t)dt
0

<

[w(d(@)]*[¥(d(@ M) [0(d(o,0))] [ (d(w@, M) [¥(doMw)))
f @(t)dt
0

Where a, b,c,e and f are non-negativeanda+b+c+e+ f € [0,1),w,d € Z with 1,b

Theorem 2.9: Let g(cq,c5,a) be an elliptic in an OMS (&,1,d) and a=
(1/2){infd(w, Mw: @ + Mw)}. If map M:Z — = be a O-preserving O-continuous integral-
type orthogonal W,-weak JS contraction with ¢;,c; € Z and d(c;, M®@) + d(c;, M@) = a,@ €
g(cq,¢5,0),then g(cq, ¢y, a) is fixed ellipse of M.

Proof: The proof obeys the method of Theorem 2.3

Theorem 2.10: If in Theorem 26,d (¢, M@) + d(c,, Mw) < a, then g(cq,cy,a) is a fixed
elliptic disc of M.

Proof: The proof obeys the method of Theorem 2.4
3. Application
The concentration @ (t) ggzt‘_t;e substance at time t is given by:

The function with initial value problem (IVP) (3.1) is
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(ts)_{tu—s),OStSssL
SOS)I =11t ,0<t<s<1

1
o) =7+ -t + f ¢(t,s) (£(s) — {()w(s))ds, s € [0,1]

Let = be a set of Riemann integrable functions on [0,1]; that is £ = R[0,1] defined d: Z X & —
R* by

d(@,d) = ||o —d||e ,@,d € &, with@w L bd

Where ||@||, = sup |@(t)|. Hence proved.
te[0,1]

Theorem 3.1:Consider the boundary value problem (BVP) (48). Let M: Z X Z — R be a self-
map in a complete metric space ( £, 1, d), satistying

l@(®) —2(®lle >0 = I5(O@(t) = OO ler < e @ () = d()lle, 4 > 0.

Proof: Defineamap M:Z — Z by
1
Mo(t)=y+ (@@ —y)t+ f ¢(t,s) (E(s) — Z(s)w(s))ds,s € [0,1]
0
Now, Since |[w(t) — ()|l > O,
d(M®m, Md) = ‘V + (@ —pt+ j ¢(t,5) (§(s) = {(w(s))ds —y — (6 — )t
0

SRR GORGEONE
0

=l ¢(t.5) (5() = ¢)@())ds = f, 5(¢,5) (£(5) = {()m(s))ds]

= |12 669 (@ (s) ~ Cp()ds|

1
<IE@(s) = {(D(S) o sup f ¢(t,s) ds
te[o,1] |Jo
1
<ea(s) -dGlo sup |[ ses)as
teo,1] |Jo

1, 1 .
<ge l@(s) =v()lle =ge™d(@,d)

If O(t) = et ,t € (0,), then
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O(d(Maw, M) = edM@I) < p(1/8)e Hd(wh) — @)@/

[0(d(w,d)]* < [@(max {d(w,d),d(d, MD), d(w, Mw),d(db, Mw), d(w, Md)]*

Where a = (1/8)e~* and a € (0,1). So, all the conditions of Theorem 8 are verified. Hence, M
has a unique fixed point.

2. Conclusion

On an OCMS, we solve new directions as a fixed ellipse to the geometry of a set of non-unique
fixed points. We arrange a special fixed point using an orthogonal © contraction and a Ciric-type
orthogonal © contraction. Further research might be interesting in the context of a set of unique
and non-unique fixed points.
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