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 Abstract 

Major limitation of MRI is long scan time. Compressed Sensing (CS) is a contemporary technique used to accelerate MRI scan 

time. In CS, fully sampled MRI images are reconstructed from the partially acquired k-space data. In CS MRI, the utilization of 

a non-linear reconstruction algorithm is one of the key requirements for successful signal recovery. Numerous methods have 

been used in CS for solving the non-linear problems to get the solution image. In this paper, we proposed GRAPPA Operator 

gridding (GROG) with CS-based p-thresholding to reconstruct the artifact free MR images from the partially acquired radial k-

space data. In this proposed scheme, initially radially acquired under-sampled k-space data is mapped onto Cartesian space 

using GROG gridding and then CS reconstruction is performed by using iterative p-thresholding. The proposed method is tested 

on four MRI data sets, (i) simulated Shepp-Logan phantom, (ii) 1.5T human brain data, (iii) 3T human brain, and (iv) 3T short-

axial cardiac (SA) radial data. The reconstruction results are compared with the CS-based iterative hard-thresholding and soft-

thresholding reconstructions. The quality of the solution images is evaluated by using (i) Artifact Power (AP), (ii) Root Mean 

Square Error (RMSE), and (iii) Peak Signal-to-Noise Ratio (PSNR).  
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1. Introduction 

 

MRI is a non-ionizing medical imaging technique that utilizes magnetic field and radio waves to generate 

better quality images of the human body [1]. The key factor of MRI is an excellent soft-tissue contrast, 

better than other contemporary medical imaging techniques e.g., X-ray, CT, PET etc. [2-4]. Long scanning 

time is a major limitation of MRI which can be perturbing for the patients [5]. MRI scan time can be 

decreased via under-sampled k-space, but the subsequent images may have artifacts [6]. From the under-

sampled data, numerous methods have been introduced in the literature to reconstruct the un-aliased images 

e.g. SENSE[3], GRAPPA [4], ESPIRiT [5]. 

Non-Cartesian (NC) trajectories play an important role in achieving faster scanning in MRI but the resultant 

images may contain complex artifacts [7-11]. NC trajectories help to minimize the acquisition time but 

require an extra post-processing called gridding. Gridding maps the acquired NC data onto a Cartesian grid 

before the inverse Fast Fourier Transform (IFFT) to obtain the MR image. Different gridding methods have 

been proposed to sample the acquired NC data onto a Cartesian grid e.g. Convolution gridding [7], Fessler 

gridding [8], and GRAPPA Operator Gridding (GROG) [9]. 

Convolution gridding [7] (the most used method for gridding) maps the attained NC data onto the Cartesian 

matrix by interpolating the acquired data with Kaiser–Bessel window followed by Density Compensation 

Function (DCF). The non-uniform FFT (NUFFT) introduced by Fessler [8] utilizes the min-max 

interpolation to converts the non-Cartesian data onto a Cartesian space followed by DCF. Besides, both 

conventional gridding (Fessler and convolutional) methods require additional parameters e.g interpolation 

kernel with various sizes, shapes and DCF [10–12]. 

N. Seblerich et.al [9] proposed GRAPPA Operator gridding (GROG) to transfer the acquired NC data 

samples to the Cartesian grid. Each acquired NC data point is mapped via GROG to the neighboring 

Cartesian location by employing self-calibrated multi-coil weight sets; however, some unfilled spaces are 

present in the gridded data. One advantage of GROG over conventional gridding [7,8] techniques is that it 

does not require any extra gridding factors like kernel and DCF.  

Compressed Sensing (CS) [13] is a trending approach for MR image reconstruction that efficiently recovers 

the solution image from fewer k-space samples. There are some requirements for successful CS based MR 

image reconstruction: (i) data must be sparse (ii) image should contain incoherent artifacts (iii) the 

reconstruction technique should be non-linear. In the recent past, different algorithms have been applied 

for CS-based image reconstruction such as non-linear conjugate Gradient (NLCG), iterative hard 

thresholding Algorithm (IHTA), iterative soft thresholding algorithm (ISTA) [14,15] and iterative p-

thresholding algorithm [12]. Iterative thresholding methods [15] are a developing area of interest in CS 

signal recovery. 

This paper proposes an application of ‘GROG followed by iterative p-thresholding based CS (GROG-

pCS)’ to reconstruct the MR images from the acquired non-Cartesian (radial) under-sampled k-space data. 

The outcomes of the proposed method are compared to the two conventional CS reconstruction techniques 

IHTA and ISTA [16]. 
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Theory 

 

GROG Gridding 

 

N. Seiberlich et.al.[9] proposed GROG to map the NC samples to the nearby Cartesian locations utilizing 

coil-by-coil self-calibrated weight sets. GROG moves each NC sample to the nearby Cartesian location by 

a shift, both in x and y directions, i.e. 𝛥𝑘𝑥 and 𝛥𝑘𝑦: 

𝒔(𝒌𝒙 + 𝜟𝒌𝒙, 𝒌𝒚 + 𝜟𝒌𝒚) = 𝑮𝒛 . 𝒔(𝒌𝒙 , 𝒌𝒚 )               (1) 

In equation (1), 𝑠(𝑘𝑥 , 𝑘𝑦 ) is the acquired NC point for a two-dimensional case; 𝐺𝑧 is the weight matrix 

with dimensions 𝑁𝑐 ×𝑁𝑐 ; where 𝑁𝑐  represents the number of receiver channels and 𝑠(𝑘𝑥 + 𝛥𝑘𝑥 , 𝑘𝑦 +

𝛥𝑘𝑦) is the estimated signal at the adjacent Cartesian position. 

GROG is a worthwhile gridding procedure as it does not require any density compensation function (DCF), 

kernel size, and shape. GROG leaves a few unfilled positions in the gridded Cartesian k-space that enhances 

data sparsity and makes GROG gridding feasible for CS [14] based image reconstruction. 

 

Summary of Iterative Thresholding Techniques in CS-MRI 

 

CS [13] is used to recover the un-aliased MR images from the partially acquired k-space data, thereby 

considerably decreasing the MRI examination time. Generalized optimization of MR image reconstruction 

problem based on CS can be written in the Lagrangian notation as:  

 

                                            𝒎𝒊𝒏𝒎||𝑭𝒖𝒎 − 𝒚||𝟐
𝟐 + 𝝀‖𝜳𝒎‖𝟏                   (2) 

 

where 𝐹𝑢 is the Fourier transform operator, 𝑚 represents the sparse coefficient of the final image, 𝑦 is the 

scanner acquired data, 𝜆 represents the thresholding factor and 𝛹  is taken as a sparsifying transform. In 

the above expression, the first term is used for error minimization and the second term is used to enforce 

sparsity.  

Iterative thresholding in CS is a developing area in which the de-aliased MR image can be obtained from 

the acquired under-sampled data [18-19]. Recently, Thomas Blumensath [20] proposed iterative hard-

thresholding algorithm (IHTA) for the CS-MR recovery problem from the uniformly under-sampled data. 

However, hard-thresholding sometimes allows pure noise coefficients that may appear in the reconstructed 

image. Hard-thresholding operator is defined as: 

𝑯𝝀(𝜷𝒊) = {
𝜷𝒊, |𝜷𝒊| > 𝝀
𝟎, |𝜷𝒊| ≤ 𝝀

                                  (𝟑) 

 

In Equation (3), 𝐻  is the thresholding function,  𝛽𝑖  is the ith element in the sparse data and 𝜆  is the 

thresholding factor. Hard-thresholding may provide some discontinuities in the resultant image[20-21]. 

Xiaobo et.al. [20] proposed an iterative soft thresholding algorithm (ISTA) for 1D variable density under-

sampled Cartesian trajectory-based CS-MR image reconstruction. ISTA solves the CS image 
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reconstruction problem when the solution is sparse enough. ISTA is an extension of IHTA and shrinks the 

noise coefficient above the threshold values. Soft-thresholding is defined as [20]: 

𝑺𝝀(𝞫𝒊) = {

𝞫𝒊 + 𝝀, 𝞫𝒊 ≤ −𝝀
𝟎, 𝞫𝒊 < 𝝀

  𝞫𝒊 − 𝝀  ,         𝞫𝒊 ≥  𝟎    
                             (𝟒) 

In Equation (4), 𝑆  is the thresholding function, 𝛽𝑖  is the ith element in the sparse data and 𝜆  is the 

thresholding factor. ISTA converges with a linear rate as compared to other thresholding techniques. 

p-thresholding [19] is a variant of ISTA that has been recently proposed to minimize the ℓ1-constrained 

problem and retrieves the artifact-free MR image iteratively. the p-thresholding operator is defined as: 

 

 (𝑿𝒑(𝒎))𝒌 = [𝒔𝒊𝒈𝒏 (𝒎𝒌). 𝒎𝒂𝒙 {𝟎,  |𝒎|𝒌 −  𝝀|𝒎|𝒌
𝒑−𝟏

]   (5) 

 

In equation (5), 𝑋 signifies thresholding function, 𝜆 represents the factor of thresholding, a weight factor 

is added to the coefficients of m defined by 𝑝, 𝑚 represents the resultant image and 𝑠𝑖𝑔𝑛 is a signum 

function. In this technique, 𝑝 is an additional parameter that adjusts itself with different values to get 

different thresholding techniques e.g., ISTA and IHTA. 

 

GROG followed by iterative p-Thresholding based CS (GROG-pCS: Proposed Method) 

 

In this paper a novel approach ‘GROG followed by CS-based p-thresholding (GROG-Pcs)’ is proposed 

to obtain the de-aliased MR images from the radially under-sampled k-space data. 

 

 

Fig. 1: A schematic depiction of the proposed method (GROG-pCS). Initially, under sampled radially 

encoded MRI data is converted to a Cartesian grid by using GROG gridding. Then iterative CS based p-

thresholding is applied to obtain the artifact recovered MR image.  

The proposed technique reconstructs the MR image in two stages: (i) GROG gridding is used to convert 

the acquired non-Cartesian (radial) k-space data to the Cartesian locations and (ii) iterative CS based p-

thresholding is applied to obtain the artifact recovered MR image.  

In the proposed scheme, the acquired radial data is initially mapped to the Cartesian scheme using GROG 

(equation (6)):  
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𝒚𝑮 = 𝑮. 𝒚         (6) 

                                 

where 𝑦 is the acquired multi-channel radial k-space data from the scanner, 𝐺 signifies the GROG gridding 

and 𝑦𝐺  being the GROG gridded data.  

As GROG gridded data has missing points that increase the data sparsity, so CS-based iterative p-

thresholding is a good choice to recover the solution MR images. Since GROG leaves void positions in the 

gridded k-space [13], therefore, the subsequent iterative reconstruction and data consistency can be 

implemented directly in the Cartesian domain that significantly decreases the computation time of the 

proposed scheme.  

A CS-MRI optimization equation is utilized to solve the MR reconstruction problem which includes the k-

space data consistency constraints and sparsity presented by the accompanying Lagrangian limit as: 

  

𝒎 =
𝒂𝒓𝒈𝒎𝒊𝒏

𝒎
 
𝟏

𝟐
‖𝑭𝒖. 𝜳𝑻 𝒎 −  𝒚𝑮‖𝟐

𝟐 +  𝝀‖𝑿𝒑(𝒎)‖
𝟏

         (𝟕) 

 

where, 𝐹𝑢  represents the sub-sampled Fourier transform, 𝑚 being the sparse coefficient of the solution 

image (m= 𝛹𝑧; where z is IFFT of under-sampled k-space data),  𝑋𝑝 is the thresholding function, 𝛹 is taken 

as sparsifying transform (wavelet in this work), 𝜆 is the thresholding parameter and 𝑦𝐺  is the GROG 

gridded k-space data. In equation (7), the first part is the data fidelity term that shows the error 

minimization, and the second term represents the p-thresholding as an ℓ1  constraint. CS-based p-

thresholding for the ℓ1 the constraint reconstruction problem is defined as: 

 

(𝑿𝒑(𝒎))𝒌 = [𝒔𝒊𝒈𝒏 (𝒎𝒌). 𝒎𝒂𝒙 {𝟎,  |𝒎|𝒌 −  |𝒎𝒌|𝒑−𝟏]    (8) 

 

where, 𝑋𝑝 is the thresholding function, 𝑚 is the reconstructed image, 𝑝 adds weight to the coefficients of 

m and 𝜆 is the thresholding parameter. In this work, the value of 𝜆 (𝜆= 0.001) is empirically chosen, 

following a decaying update for each iteration by the factor 𝛽 to solve equation 8 where 0 < 𝛽 < 1. Table 

1 shows the proposed method’s pseudo code. 
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                                Table 1. Pseudo code of the proposed algorithm (GROG-pCS) 

 
 

Materials and Method 

 

The proposed GROG-pCS technique retrieves the solution image from GROG gridded sub-sampled data 

followed by CS-based iterative p-thresholding. The reconstruction results are compared to two 

contemporary thresholding techniques, one is iterative hard-thresholding (IHTA) and the other is iterative 

soft-thresholding (ISTA) [20-23] schemes. In this work, the values of λ and p are chosen empirically after 

performing experiments for a range of values of p [i.e., 2.5 to -2.5] and λ [i.e., 0.1 to 0.05×10-3]. The 

proposed method is implemented on MATLAB (Math Works, R2019a) and tested on four datasets, (i) 

Shepp–Logan phantom data, (ii) 1.5T human brain data, (iii) 3T human brain data, and (iv) 3T free 

breathing human short-axis (SA) cardiac radial datasets.  
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Data Acquisition: 

 

We used four data sets to evaluate the performance of our proposed method. Datasets 1 [23] and 3 [25] are 

publicly available while written consent was obtained for datasets 2 and 4. First dataset was 8 channel 

Shepp–Logan phantom having dimensions 256 × 256 × 8 . This data was simulated on MATLAB (Math 

Works, R2019a) by using Biot–Savart method [23].  

2nd dataset was 1.5T human head MRI data having dimensions 256 × 256 × 8 . This dataset was obtained 

at Saint Mary’s Hospital, London [25]. The data was acquired with eight-channel human head coils with 

these examination factors: TR=500 msec, TE=10 msec, FOV=20 cm, slice thickness=3 mm, flip 

angle=50°and matrix size=256 × 256.  

The 3rd dataset was MRI human head acquired by using a 3T scanner (Waukesha, Wisconsin, USA) with 

eight-channel head coils. The following parameters were used for data acquisition: TR=500msec, 

TE=10msec, FOV=20cm, slice thickness=3mm, bandwidth=31.25 kHz/pixel, and flip angle =500 (publicly 

available and downloaded from http://www.acsu.buffalo.edu/~leiying/cbil/index.html).  

Using the Fessler toolbox [11], Dataset-1 (Shepp–Logan phantom) and Dataset-2 ( human head MRI data 

) were initially transformed to a fully sampled radial k-space with 402 radial spokes utilizing the formula 

: 
𝝅

𝟐
× 𝑁 [15], where N is the readout point. This fully sampled radially encoded data was under-sampled 

retrospectively at various acceleration factors (4 ≤ AF ≤ 9) to test the viability of the proposed scheme. 

Experiments were also performed on another non-ECG gated, cardiac radial dataset which was acquired 

during free-breathing (Dataset-4). This data was radially obtained from 3T Skyra Siemens Scanner at Case 

Western University, USA with 30 channel and the accompanying sweep parameters: TR=2.94 ms, readout 

points=256 and fully sampled radial projections=144.  

 

Evaluation Parameters 

The performance of proposed method is assessed by using (i) Peak Signal-to-Noise Ratio (PSNR), (ii) 

Artifact Power (AP) and (iii) Root Mean Square Error (RMSE) [19-22]. 

 

AP 

AP is defined as the square difference between the reference image and the reconstructed image. A lower 

artifact power value shows better quality of the image. AP can be calculated as [19] : 

𝑨𝑷 =
∑  ‖𝑰𝒓𝒆𝒇−𝑰𝒓𝒆𝒄𝒐𝒏‖

𝟐

∑ |𝑰𝒓𝒆𝒇(𝒙,𝒚)|𝟐
                                 (9) 

In Equation 9, 𝐼𝑟𝑒𝑓 and 𝐼𝑟𝑒𝑐𝑜𝑛 are the reference and the reconstructed images, respectively.  

 

RMSE 

 

RMSE [16] is based on the Mean Square Error (MSE). A lower value of RMSE represents improved 

image quality. RMSE is calculated as follows [1,19,22]: 

 

http://www.acsu.buffalo.edu/~leiying/cbil/index.html
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𝑹𝑴𝑺𝑬 = √ 
∑‖𝑰𝒓𝒆𝒇 − 𝑰𝒓𝒆𝒄𝒐𝒏‖

𝟐
      

∑ |𝑰𝒓𝒆𝒇 (𝒙, 𝒚)|
              (𝟏𝟎)     

 

All parameters are same as defined in equation (9). 

PSNR 

PSNR is the ratio of the maximum signal strength to the noise level in the reconstructed image. A greater 

value of PSNR shows better signal strength, therefore better image quality. PSNR is calculated as  

 

 

𝐏𝐒𝐍𝐑 = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎 (
𝐦𝐚𝐱 (𝑰𝒓𝒆𝒄𝒐𝒏)𝟐

𝑴𝑺𝑬
)        (𝟏𝟏) 

Similarly, MSE can be calculated as [22]: 

𝑴𝑺𝑬 =
∑‖𝑰𝒓𝒆𝒇(𝒙,𝒚)− 𝑰𝒓𝒆𝒄𝒐𝒏(𝒙,𝒚)‖

𝟐

∑|𝑰𝒓𝒆𝒇(𝒙,𝒚)|
                      (12) 

Here 𝑚𝑎𝑥 finds the maximum intensity of the image, MSE signifies the mean square error and 𝐼𝑟𝑒𝑐𝑜𝑛 

indicates the reconstructed image. 

 

Results 

The reconstructed images from the proposed method (GROG-pCS), CS-based hard-thresholding and CS-

based soft-thresholding for all four datasets ( Shepp-Logan phantom data, 1.5T & 3T brain, and 3T SA 

radial data) are presented in Figs. 2 to 5 respectively; where Row-A shows results from the proposed 

approach (GROG-pCS), Row-B shows images of the CS-based ISTA and Row-C illustrates the 

reconstructed images of the CS-based IHTA with 101, 67 and 45 radial lines respectively, at various AFs.  

In each fig, the top left corner shows the acceleration factor (AFs), and the top right corner shows the 

number of acquired radial projections in each data set.  

Fig. 2 demonstrates the results using different thresholding techniques for dataset-1(Shepp–Logan phantom 

data). Fig.3 demonstrates the results using different thresholding techniques for 1.5 T human head data. 

The results show that at higher AF, the proposed method gives improved results while CS-based ISTA and 

IHTA contains more aliasing artifacts. Fig.5 shows the solution images of the proposed method, soft-

thresholding (ISTA) and hard-thresholding (IHTA) for 3T cardiac SA dataset. 

Tables 2-5 provides comparison of AP, RMSE and PSNR of the proposed method, soft-thresholding 

(ISTA) and hard-thresholding (IHTA) for all datasets. 
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Fig.2: Simulated phantom data reconstruction results using the Proposed method, CS-based soft 

thresholding (ISTA) and hard thresholding (IHTA) at AF=4,6 and 9 with 101, 67, and 45 radial lines, 

respectively. Proposed method significantly reduces the undersampling artifacts (shown by yellow and red 

arrows at different location) conventional ISTA and IHTA reconstruction methods at AF=4 ,6 and 9 
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Table 2 AP, PSNR, and RMSE values of the proposed technique, CS-based soft and hard thresholding for 

the simulated phantom data. There is significant improvement in AP, RMSE and PSNR values of the 

proposed method compared to conventional soft and hard thresholding methods 

 

 
Fig.3: Results of the 1.5T human head dataset at different acceleration factors. Proposed method provides 

improved reconstruction results (shown by yellow and red arrows at different location) as compared to 

conventional CS-based ISTA and CS-based IHTA at AF=4,6. At acceleration factor=9, proposed method 

provides less undersampling artifacts compared to both conventional iterative thresholding techniques 
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Table 3 Evaluation parameters (i.e., AP, PSNR, and RMSE) of the proposed scheme, soft-thresholding 

and hard- thresholding-based CS for 1.5T human head reconstructed images 

 

 
Fig.4: Results for 3T human head dataset showing a comparison of the proposed scheme with 

conventional soft-thresholding and hard-thresholding based CS at AF=4, 6 and 9. Proposed method 

provides improved reconstruction results (shown by yellow and red arrows at different location) as 

compared to conventional CS-based ISTA and CS-based IHTA at AF=4, 6 and 9. 
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Table 4 Evaluation parameters (i.e., PSNR, and RMSE) of the proposed method, soft-thresholding and 

hard- thresholding-based CS for 3T human head reconstructed images 

 
 

 

 

 
Fig.5: 3T short-axis cardiac real time radial dataset results, showing a comparison of the proposed 

scheme with the conventional soft-thresholding and hard-thresholding (Row-A, B and C respectively) 

based CS at acceleration factors 4 ≤ AF ≤ 9 
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Table 5: AP, PSNR and RMSE values of the proposed method, soft and hard-thresholding for 3T cardiac 

data.  

 
 

 

 

 

Discussion 

 

NC trajectories help to reduce MR examination time and under-sampling can provide a further reduction 

in scan time [9]. However, under-sampling results in aliasing artifacts in the final images. The radial 

trajectory allows the reconstruction of MR images from a restricted number of projections with a much-

improved image quality compared to the Cartesian trajectories, although a further step called gridding is 

required as part of the image reconstruction process. Gridding resamples the acquired NC data onto a 

Cartesian k-space [10].  

CS has been recently proposed for efficiently recovering the solution image from a lesser number of k-

space samples. In this paper, GROG followed by iterative p-thresholding is presented to reconstruct un-

aliased MR images from the acquired under-sampled radially encoded k-space data [9]. The results of the 

proposed scheme are compared to other contemporary CS based approaches for iterative MR image 

reconstruction i.e., CS-based ISTA and IHTA. Experiments are performed on four different radially 

encoded data sets with different AFs i.e. (4 ≤ AF ≤ 9), and having radial spokes 101, 67, and 45, 

respectively. Tables 2 to 5 provide a quantitative comparison of the evaluation parameters i.e., AP, RMSE, 

and PSNR values for the reconstructed images. 

Table 2 shows comparison of AP, RMSE and PSNR between the proposed method, CS-based soft and 

hard-thresholding at different AFs for simulated phantom (dataset1) which clearly shows improvement   

77% improvement with reference to soft-thresholding based CS and 78 % improvement with reference to 

the hard-thresholding based CS at AF=4 in terms of AP. Similarly, Table 3 provides comparison of AP, 

RMSE and PSNR values for all three reconstruction schemes for 1.5 T Human head data. It shows 60% 

improvement in AP with reference to ISTA based CS and 87% improvement with reference to the IHTA 

based CS at AF=9. In terms of RMSE, 26% and 67% improvements are obtained as compared to the ISTA 

and IHTA respectively for 1.5 T Human head data at AF=9. Further, the results show a 5% improvement 
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in terms of PSNR than IHTA and 8% improvement than IHTA at AF=9 for the same data. For 3T cardiac 

radial data (Table 4), the proposed method shows improvement 2 % improvement in terms of AP with 

reference to ISTA based CS and 4% improvement with reference to IHTA based CS at AF=6. The proposed 

method used GROG gridding and reconstructed the final images from the gridded data utilizing iterative 

p-thresholding. p-thresholding is an advanced version of the iterative soft-thresholding algorithm (ISTA) 

[16] and minimizes the non-convex functions. The use of the thresholding function encourages image 

sparsity, which is a key element in CS-based image reconstruction [18]. 

GROG is trajectory dependent and intimately maps the greatest number of samples even at lower 

acceleration factors in the focal point of the gridded k-space [9]. 

The efficiency of the proposed method deteriorates at higher acceleration factors as the distance between 

the acquired radial spokes becomes greater; thus, GROG maps fewer samples at the center of k-space and 

leaves more gaps. After gridding, CS-based iterative p-thresholding is used to reconstruct the artifact-free 

images. CS-based p-thresholding directly cancels the incoherent artifacts created due to the sub-sampling 

of k-space. 

Figs. 2 to 5 show that the CS-based soft and hard-thresholding exhibit more aliasing artifacts at lower AFs 

compared to our proposed method. Also, the proposed technique successfully recovers the images whereas 

conventional CS-based soft and hard-thresholding fail to remove the artifacts at higher AF i.e., 6&9. 

Evident from the quantifying parameters and visual assessment of the reconstruction results, the proposed 

scheme provides an improvement in AP, RMSE, and PSNR values at different acceleration factors e.g., 4, 

6, and 9. Also, a visual assessment of the reconstruction results demonstrates that the proposed method has 

noticeably removed the artifacts whereas artifacts remain in the case of CS-based soft and hard-

thresholding. 

In this work, the thresholding values in equation 8 (i.e., λ and p) are selected by comparing the image 

quality for a range of thresholding values. Appropriate selection of p and 𝜆 is very important for efficient 

reconstruction. In the future, machine learning could be used for an automatic determination of the 

thresholding parameters in Equation 8 for efficient reconstruction results.  

 

2. Conclusion 

 

This paper presented GROG followed by CS-based p-thresholding (GROG-pCS) for partially acquired 

radially k-space data. The proposed method is assessed on 4 different MRI data sets, (i) Shepp-Logan 

phantom, (ii) 1.5T human head data (iii) (iii) 3T human head data and (iv) 3T short axial cardiac real-time 

radial data at different acceleration factors (4 ≤ AF ≤ 9). The results show that there are substantial 

improvements in the results of the proposed method than conventional CS-based soft and hard-thresholding 

algorithms e.g., the results of 1.5T brain data showed improved results, such as 50% & 88% increase in 

AP, 29% & 70% in RMSE, and 4% & 12% in PSNR at AF=6. 
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